

 Navigation

 	
 index

 	
 next |

 	Enzo 2.1 documentation

Welcome to Enzo’s documentation!

This is the development site for Enzo, an adaptive mesh refinement (AMR),
grid-based hybrid code (hydro + N-Body) which is designed to do simulations of
cosmological structure formation. Links to documentation and downloads for all
versions of Enzo from 1.0 on are available.

Enzo development is supported by grants AST-0808184 and OCI-0832662 from the
National Science Foundation.

	Enzo Public License

	Getting Started with Enzo
	Obtaining and Building Enzo

	How to run an Enzo test problem

	How to run a cosmology simulation

	Sample inits and Enzo parameter files

	Writing Enzo Parameter Files

	Data Analysis Basics

	Controlling Enzo data output

	User Guide
	Executables, Arguments, and Outputs

	Running Enzo

	Enzo Test Suite

	Creating Cosmological Initial Conditions

	Running Large Simulations

	Enzo Output Formats

	Analyzing With YT

	Simulation Names and Identifiers

	Embedded Python

	The Enzo Hierarchy File - Explanation and Usage

	Enzo Flow Chart, Source Browser

	Enzo Parameter List
	Stopping Parameters

	Initialization Parameters

	Simulation Identifiers and UUIDs

	I/O Parameters

	Hierarchy Control Parameters

	Hydrodynamic Parameters

	Magnetohydrodynamic Parameters

	Cosmology Parameters

	Gravity Parameters

	Particle Parameters

	Parameters for Additional Physics

	Test Problem Parameters

	Other External Parameters

	Other Internal Parameters

	Physics Modules in Enzo
	Active Particles: Stars, BH, and Sinks

	Hydro and MHD Methods

	Cooling and Heating of Gas

	Radiative Transfer

	Shock Finding

	Developer’s Guide
	Introduction to Enzo Modification

	Programming Guide

	Adding a new parameter to Enzo

	How to add a new baryon field

	Variable precision in Enzo

	Adding new refinement criteria

	Auto adjusting refine region

	Accessing Data in BaryonField

	Grid Field Arrays

	Adding a new Local Operator.

	Adding a new Test Problem.

	Using Parallel Root Grid IO

	Reference Information
	Enzo Primary References

	Enzo Algorithms

	Enzo Internal Unit System

	Enzo Particle Masses

	The Flux Object

	Header files in Enzo

	The Enzo Makefile System

	Parallel Root Grid IO

	Getting Around the Hierarchy: Linked Lists in Enzo

	Machine Specific Notes

	Particles in Nested Grid Cosmology Simulations

	Nested Grid Particle Storage in RebuildHierarchy

	Estimated Simulation Resource Requirements

	SetAccelerationBoundary (SAB)

	Star Particle Class

	Building the Documentation

	Presentations Given About Enzo
	Halos and Halo Finding in yt

Enzo Mailing Lists

There are two mailing lists for Enzo hosted on Google Groups, enzo-users
and enzo-dev.

enzo-users

Everyone Enzo user should sign up for the
enzo-users mailing list.
This is is used to announce changes to Enzo, and sometimes major changes
Enzo-related analysis tools.
This list is appropriate for anything else Enzo-related,
such as machine-specific compile problems,
discussions of the science and physics behind what Enzo does,
or queries about problem initialization.
We recommend using the Enzo users mailing list liberally - by this we mean
that any question asked on the list will educate everyone else on the list,
and is manifestly not a stupid question.
As long as a good effort has been made to try to figure out the answer
before mailing the list, all questions about Enzo are welcome!
Please follow the link below to sign up for this list and a link
to discussion archives:

http://groups.google.com/group/enzo-users

To post a message to this list, send an email to:

enzo-users@googlegroups.com

The archives for the old Enzo users mailing list can be found linked below.
A search of the list archives should be performed before emailing the list
to prevent asking a question that has already been answered (using, for example,
an advanced web search [http://www.google.com/advanced_search]
limited to that page).

https://mailman.ucsd.edu/pipermail/enzo-users-l/

enzo-dev

The second mailing is for developers of Enzo. This is for Enzo “old-hats”,
or anyone interested in adding new features to Enzo, or anyone who wants a deeper
understanding of the internals of Enzo. Please follow the link below
to sign up for the list and a link to the discussion archives:

http://groups.google.com/group/enzo-dev

To post a message to this list, send an email to:

enzo-dev@googlegroups.com

Regression Tests

The Enzo trunk and select branches are checked out of Subversion and tested
continuously using LCATest [http://lca.ucsd.edu/projects/lcatest] on
ppcluster.ucsd.edu:

	Continuous Regression Test Results [http://ppcluster.ucsd.edu/lcatest/]

For questions or suggestions related to the Enzo regression testing or lcatest,
please contact James Bordner at jobordner at ucsd.edu.

Citing Enzo

If you use Enzo for a scientific publication, we ask that you cite the code in
the following way in the acknowledgments of your paper:

Computations described in this work were performed using the Enzo code
(http://enzo.googlecode.com), which is the product of a collaborative effort
of scientists at many universities and national laboratories.

Search

	Search Page

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Enzo Public License

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

Enzo Public License

University of Illinois/NCSA Open Source License

Copyright (c) 1993-2000 by Greg Bryan and the Laboratory for Computational
Astrophysics and the Board of Trustees of the University of Illinois in
Urbana-Champaign. All rights reserved.

Developed by:

	Laboratory for Computational Astrophysics

	National Center for Supercomputing Applications

	University of Illinois in Urbana-Champaign

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal with
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimers.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the documentation
and/or other materials provided with the distribution.

	Neither the names of The Laboratory for Computational Astrophysics,
The National Center for Supercomputing Applications, The University of
Illinois in Urbana-Champaign, nor the names of its contributors may be used
to endorse or promote products derived from this Software without specific
prior written permission.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
THE SOFTWARE.

University of California/BSD License

Copyright (c) 2000-2008 by Greg Bryan and the Laboratory for Computational
Astrophysics and the Regents of the University of California.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the Laboratory for Computational Astrophysics, the
University of California, nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Getting Started with Enzo

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

Getting Started with Enzo

	Obtaining and Building Enzo

	How to run an Enzo test problem

	How to run a cosmology simulation

	Sample inits and Enzo parameter files

	Writing Enzo Parameter Files

	Data Analysis Basics

	Controlling Enzo data output

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Obtaining and Building Enzo

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	Getting Started with Enzo

Obtaining and Building Enzo

Enzo Compilation Requirements

Enzo can be compiled on any POSIX-compatible operating system, such as Linux,
BSD (including Mac OS X), and AIX. In addition to a C/C++ and Fortran-90
compiler, the following libraries are necessary:

	HDF5 [http://www.hdfgroup.org/HDF5/], the hierarchical data format.
Note that HDF5 also may require the szip and zlib libraries, which can be
found at the HDF5 website. Note that compiling with HDF5 1.8 or greater
requires that the compiler directive H5_USE_16_API be specified;
typically this is done with -DH5_USE_16_API and it’s set in most of
the provided makefiles.

	MPI [http://www.mcs.anl.gov/research/projects/mpi/], for multi-processor parallel
jobs. Note that Enzo will compile without MPI, but it’s fine to compile
with MPI and only run oon a single processor.

Mercurial Check Out Instructions

Enzo is provided in both a stable and an unstable form. It is highly
recommended that for any production run the stable version is used.
Additionally, we encourage anyone who uses Enzo to sign up for the Enzo Users’
List [http://groups.google.com/group/enzo-users]. A source
browser is also available.

Please visit the Google Code project website to access the Enzo source tree and
read the latest source checkout instructions.

http://enzo.googlecode.com/

Updating a source tree with Mercurial is beyond the scope of this document; for
more information, please peruse Developer’s Guide and the Mercurial
documentation. The mercurial [http://mercurial.selenic.com/] commands of
most use are pull, update and incoming.

Building Enzo

This is a quick, line by line example of checking out and building
Enzo using current build system. A comprehensive list of the make
system arguments can be found in The Enzo Makefile System.

This assumes that we’re working from a checkout from the Enzo project page,
located at http://enzo.googlecode.com/ . Checkout instructions can be found
there, and for more detailed information about the structure of the Enzo source
control repository, see Introduction to Enzo Modification.

Initializing the Build System

This just clears any existing configurations left over from a previous machine,
and creates a couple of files for building.

~ $ cd enzo/
~/enzo $./configure

This should output a brief message saying that the build system has been
initialized. To confirm that it ran, there should be a file called
Make.config.machine in the src/enzo subdirectory.

Go to the Source Directory

The source code for the various Enzo components are laid out in the
src/ directory.

~/enzo/src $ cd src/
~/enzo/src $ ls
Makefile P-GroupFinder anyl enzo enzohop inits
lcaperf mpgrafic ring
~/enzo/src $

Right now, we’re just building the main executable (the one that
does the simulations), so we need the enzo/ directory.

~/enzo/src $ cd enzo/

Find the Right Machine File

We’ve chosen to go with configurations files based on specific
machines. This means we can provide configurations files for most
of the major NSF resources, and examples for many of the one-off
(clusters, laptops, etc.).

These machine-specific configuration files are named Make.mach.machinename.

~/enzo/src/enzo $ ls Make.mach.*
Make.mach.darwin Make.mach.nasa-discover Make.mach.ncsa-cobalt
Make.mach.ornl-jaguar-pgi Make.mach.tacc-ranger Make.mach.unknown
Make.mach.kolob Make.mach.nasa-pleiades Make.mach.nics-kraken
Make.mach.scinet Make.mach.triton
Make.mach.linux-gnu Make.mach.ncsa-abe Make.mach.orange
Make.mach.sunnyvale Make.mach.triton-intel
~/enzo/src/enzo $

In this example, we choose Make.mach.darwin, which is appropriate for Mac
OS X machines.

Porting

If there’s no machine file for the machine you’re on, you will have
to do a small amount of porting. However, we have attempted to
provide a wide base of Makefiles, so you should be able to find one
that is close, if not identical, to the machine you are attempting
to run Enzo on. The basic steps are as follows:

	Find a Make.mach file from a similar platform.

	Copy it to Make.mach.site-machinename (site = sdsc or owner,
machinename = hostname).

	Edit the machine-specific settings (compilers, libraries, etc.).

	Build and test.

If you expect that you will have multiple checkouts of the Enzo source code,
you should feel free to create the directory $HOME/.enzo/ and place your custom
makefiles there, and Enzo’s build system will use any machine name-matching
Makefile in that directory to provide or override Make settings.

Make sure you save your configuration file! If you’re on a big system (multiple
Enzo users), please post your file to the Enzo mailing list [http://groups.google.com/group/enzo-users], and it will be
considered for inclusion with the base Enzo distribution.

HDF5 Versions

If your system uses a version of HDF5 greater than or equal to 1.8, you
probably need to add a flag to your compile settings, unless your HDF5 library
was compiled using –with-default-api-version=v16. The simplest thing to do is
to find the line in your Make.mach file that sets up MACH_DEFINES, which may
look like this

MACH_DEFINES = -DLINUX # Defines for the architecture; e.g. -DSUN, -DLINUX, etc.

and change it to

MACH_DEFINES = -DLINUX -DH5_USE_16_API # Defines for the architecture; e.g. -DSUN, -DLINUX, etc.

This will ensure that the HDF5 header files expose the correct API
for Enzo.

Build the Makefile

Now that you have your configuration file, tell the build system to
use it:

~/enzo/src/enzo $ make machine-darwin

 *** Execute 'gmake clean' before rebuilding executables ***

 MACHINE: Darwin (OSX Leopard)

~/enzo/src/enzo $

You may also to know the settings (precision, etc.) that’s being
use. You can find this out using make show-config. For a detailed
explanation of what these mean, see The Enzo Makefile System.

~/enzo/src/enzo $ make show-config

MACHINE: Darwin (OSX Leopard)
MACHINE-NAME: darwin

PARAMETER_MAX_SUBGRIDS: 100000
PARAMETER_MAX_BARYONS: 20
PARAMETER_MAX_TASKS_PER_NODE: 8
PARAMETER_MEMORY_POOL_SIZE: 100000

CONFIG_PRECISION: 64
CONFIG_PARTICLES: 64
CONFIG_INTEGERS: 64
CONFIG_PARTICLE_IDS: 64
CONFIG_INITS: 64
CONFIG_IO: 32
CONFIG_USE_MPI: yes
CONFIG_OBJECT_MODE: 64
CONFIG_TASKMAP: no
CONFIG_PACKED_AMR: yes
CONFIG_PACKED_MEM: no
CONFIG_LCAPERF: no
CONFIG_PAPI: no
CONFIG_PYTHON: no
CONFIG_ECUDA: no
CONFIG_OOC_BOUNDARY: no
CONFIG_OPT: debug
CONFIG_TESTING: no
CONFIG_TPVEL: no
CONFIG_PHOTON: yes
CONFIG_HYPRE: no
CONFIG_EMISSIVITY: no
CONFIG_USE_HDF4: no
CONFIG_NEW_GRID_IO: yes
CONFIG_BITWISE_IDENTICALITY: yes
CONFIG_FAST_SIB: yes
CONFIG_FLUX_FIX: yes

~/enzo/src/enzo $

Build Enzo

The default build target is the main executable, Enzo.

~/enzo/src/enzo $ make
Updating DEPEND
pdating DEPEND
Compiling enzo.C
Compiling acml_st1.src
... (skipping) ...
Compiling Zeus_zTransport.C
Linking
Success!
~/enzo/src/enzo $

After compiling, you will have enzo.exe in the current directory.

Building other Tools

Building other tools is typically very straightforward; they rely on the same
Makefiles, and so should require no porting or modifications to configuration.

Inits

~/enzo/src/ring $ cd ../inits/
~/enzo/src/inits $ make
Compiling enzo_module.src90
Updating DEPEND
Compiling acml_st1.src
...
Compiling XChunk_WriteIntField.C
Linking
Success!

This will produce inits.exe.

Ring

~/enzo/src/enzo $ cd ../ring/
~/enzo/src/ring $ make
Updating DEPEND
Compiling Ring_Decomp.C
Compiling Enzo_Dims_create.C
Compiling Mpich_V1_Dims_create.c
Linking
Success!

This will produce ring.exe.

YT

To install yt, you can use the installation script provided with the yt source
distribution. See the yt homepage [http://yt.enzotools.org/] for more
information.

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 How to run an Enzo test problem

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	Getting Started with Enzo

How to run an Enzo test problem

Enzo comes with a set of pre-written parameter files which are used
to test Enzo. This is useful when migrating to a new machine with
different compilers, or when new versions of compilers and
libraries are introduced. Also, all the test problems should run to
completion, which is generally not a guarantee!

At the top of each Enzo parameter file is a line like ProblemType =
23, which tells Enzo the type of problem. You can see how this
affects Enzo by inspecting InitializeNew.C. In this
example, this gets called:

if (ProblemType == 23)
 ret = TestGravityInitialize(fptr, Outfptr, TopGrid, MetaData);

which then calls the routine in TestGravityInitialize.C,
and so on. By inspecting the initializing routine for each kind of
problem, you can see what and how things are being included in the
simulation.

The test problem parameter files are inside doc/examples.
Please see Enzo Test Suite for a full list of test
problems. The files that end in .enzo are the Enzo parameter files,
and .inits are inits parameter files. inits files are only used for
cosmology simulations, and you can see an example of how to run
that in How to run a cosmology simulation. Let’s try a
couple of the non-cosmology test problems.

ShockPool3D test

The ShockPool3D is a purely hydrodynamical simulation testing a
shock with non-periodic boundary conditions. Once you’ve
built enzo (Obtaining and Building Enzo), make a directory
to run the test problem in. Copy enzo.exe and ShockPool3D.enzo into
that directory.
This example test will be run using an interactive session.
On Kraken [http://www.nics.tennessee.edu/computing-resources/kraken],
to run in an interactive queue, type:

qsub -I -V -q debug -lwalltime=2:00:00,size=12

12 cores (one node) is requested for two hours. Of course, this
procedure may differ on your machine. Once you’re in the
interactive session, inside your test run directory, enter:

aprun -n 12 ./enzo.exe -d ShockPool3D.enzo > 01.out

The test problem is run on 12 processors, the debug flag (-d) is
on, and the standard output is piped to a file (01.out). This took
about an hour and twenty minutes to run on Kraken. When it’s
finished, you should see Successful run, exiting. printed to
stderr. Note that if you use other supercomputers, aprun may be
replaced by ‘mpirun’, or possibly another command. Consult your
computer’s documentation for the exact command needed.

If you want to keep track of the progress of the run, in another
terminal type:

tail -f 01.out
tail -f 01.out | grep dt

The first command above gives too verbose output to keep track of
the progress. The second one will show what’s more interesting,
like the current cycle number and how deep in the AMR hierarchy the
run is going (look for Level[n] where n is the zero-based AMR level
number). This command is especially useful for batch queue jobs
where the standard out always goes to a file.

GravityTest test

The GravityTest.enzo problem only tests setting up the gravity
field of 5000 particles. A successful run looks like this and
should take less than a second, even on one processor:

test2> aprun -n 1 ./enzo.exe GravityTest.enzo > 01.out
****** GetUnits: 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 *******
CWD test2
Global Dir set to test2
Successfully read in parameter file GravityTest.enzo.
INITIALIZATION TIME = 6.04104996e-03
Successful run, exiting.

Other Tests & Notes

All the outputs of the tests have been linked to on this page,
below. Some of the tests were run using only one processor, and
others that take more time were run using 16. All tests were run
with the debug flag turned on (which makes the output log, 01.out
more detailed). Enzo was compiled in debug mode without any
optimization turned on (gmake opt-debug). The tests that produce
large data files have only the final data output saved. If you wish
to do analysis on these datasets, you will have to change the
values of GlobalDir, BoundaryConditionName, BaryonFileName and
ParticleFileName in the restart, boundary and hierarchy files to
match where you’ve saved the data.

PressurelessCollapse

The PressurelessCollapse test required isolated boundary
conditions, so you need to compile Enzo with that turned on (gmake
isolated-bcs-yes). You will also need to turn off the top grid
bookkeeping (gmake unigrid-transpose-no).

Input Files

A few of the test require some input files to be in the run
directory. They are kept in input:

> ls input/
ATOMIC.DAT cool_rates.in lookup_metal0.3.data

You can either copy the files into your run directory as a matter
of habit, or copy them only if they’re needed.

Outputs

	AMRCollapseTest.tar.gz [http://lca.ucsd.edu/software/enzo/data/AMRCollapseTest.tar.gz]
- 24 MB

	AMRShockPool2D.tar.gz [http://lca.ucsd.edu/software/enzo/data/AMRShockPool2D.tar.gz]
- 35 KB

	AMRShockTube.tar.gz [http://lca.ucsd.edu/software/enzo/data/AMRShockTube.tar.gz]
- 23 KB

	AMRZeldovichPancake.tar.gz [http://lca.ucsd.edu/software/enzo/data/AMRZeldovichPancake.tar.gz]
- 72 KB

	AdiabaticExpansion.tar.gz [http://lca.ucsd.edu/software/enzo/data/AdiabaticExpansion.tar.gz]
- 31 KB

	CollapseTest.tar.gz [http://lca.ucsd.edu/software/enzo/data/CollapseTest.tar.gz]
- 5.4 MB

	CollideTest.tar.gz [http://lca.ucsd.edu/software/enzo/data/CollideTest.tar.gz]
- 7.6 MB

	DoubleMachReflection.tar.gz [http://lca.ucsd.edu/software/enzo/data/DoubleMachReflection.tar.gz]
- 2.1 MB

	ExtremeAdvectionTest.tar.gz [http://lca.ucsd.edu/software/enzo/data/ExtremeAdvectionTest.tar.gz]
- 430 KB

	GravityStripTest.tar.gz [http://lca.ucsd.edu/software/enzo/data/GravityStripTest.tar.gz]
- 12 MB

	GravityTest.tar.gz [http://lca.ucsd.edu/software/enzo/data/GravityTest.tar.gz]
- 99 KB

	GravityTestSphere.tar.gz [http://lca.ucsd.edu/software/enzo/data/GravityTestSphere.tar.gz]
- 4.6 MB

	Implosion.tar.gz [http://lca.ucsd.edu/software/enzo/data/Implosion.tar.gz]
- 5.6 MB

	ImplosionAMR.tar.gz [http://lca.ucsd.edu/software/enzo/data/ImplosionAMR.tar.gz]
- 3.5 MB

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 How to run a cosmology simulation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	Getting Started with Enzo

How to run a cosmology simulation

In order to run a cosmology simulation, you’ll need to build enzo.exe,
inits.exe and ring.exe (see Obtaining and Building Enzo) inits creates the
initial conditions for your simulation, and ring splits up the root
grid which is necessary if you’re using parallel IO. Once you have
built the three executables, put them in a common directory where you
will run your test simulation. You will also save the inits and param
files (shown and discussed below) in this directory.

Creating initial conditions

The first step in preparing the simulation is to create the initial
conditions. The file inits uses is a text file which contains a
list of parameters with their associated values. These
values tell the initial conditions generator necessary information
like the simulation box size, the cosmological parameters and the
size of the root grid. The code then takes that information and
creates a set of initial conditions. Here is an example inits
file:

#
Generates initial grid and particle fields for a
CDM simulation
#
Cosmology Parameters
#
CosmologyOmegaBaryonNow = 0.044
CosmologyOmegaMatterNow = 0.27
CosmologyOmegaLambdaNow = 0.73
CosmologyComovingBoxSize = 10.0 // in Mpc/h
CosmologyHubbleConstantNow = 0.71 // in units of 100 km/s/Mpc
CosmologyInitialRedshift = 60
#
Power spectrum Parameters
#

PowerSpectrumType = 11
PowerSpectrumSigma8 = 0.9
PowerSpectrumPrimordialIndex = 1.0
PowerSpectrumRandomSeed = -584783758
#
Grid info
#
Rank = 3
GridDims = 32 32 32
InitializeGrids = 1
GridRefinement = 1
#
Particle info
#
ParticleDims = 32 32 32
InitializeParticles = 1
ParticleRefinement = 1
#
Overall field parameters
#
#
Names
#
ParticlePositionName = ParticlePositions
ParticleVelocityName = ParticleVelocities
GridDensityName = GridDensity
GridVelocityName = GridVelocities

inits is run by typing this command:

./inits.exe -d Example_Cosmology_Sim.inits

inits will produce some output to the screen to tell you what it is
doing, and will write five files: GridDensity, GridVelocities,
ParticlePositions, ParticleVelocities and PowerSpectrum.out. The
first four files contain information on initial conditions for the
baryon and dark matter componenets of the simulation, and are HDF5
files. The last file is an ascii file which contains information on
the power spectrum used to generate the initial conditions.

It is also possible to run cosmology simulations using initial
nested subgrids.

Parallel IO - the ring tool

This simulation is quite small. The root grid is only 32 cells on a
side and we allow a maximum of three levels of mesh refinement.
Still, we will use the ring tool, since it is important for larger
simulations of sizes typically used for doing science. Additionally,
if you wish to run with 64 or more processors, you should use
ParallelRootGridIO, described in Parallel Root Grid IO.

The ring tool is part of the Enzo parallel IO (input-output)
scheme. Examine the last section of the parameter file (see below)
for this example simulation and you will see:

#
IO parameters
#
ParallelRootGridIO = 1
ParallelParticleIO = 1

These two parameters turn on parallel IO for both grids and
particles. In a serial IO simulation where multiple processors are
being used, the master processor reads in all of the grid and
particle initial condition information and parcels out portions of
the data to the other processors. Similarly, all simulation output
goes through the master processor as well. This is fine for
relatively small simulations using only a few processors, but slows
down the code considerably when a huge simulation is being run on
hundreds of processors. Turning on the parallel IO options allows
each processor to perform its own IO, which greatly decreases the
amount of time the code spends performing IO.

The process for parallelizing grid and particle information is quite different.
Since it is known exactly where every grid cell in a structured Eulerian grid
is in space, and these cells are stored in a regular and predictable order in
the initial conditions files, turning on ParallelRootGridIO simply tells
each processor to figure out which portions of the arrays in the GridDensity
and GridVelocities belong to it, and then read in only that part of the
file. The particle files (ParticlePositions and ParticleVelocities)
store the particle information in no particular order. In order to efficiently
parallelize the particle IO the ring tool is used. ring is run on the same
number of processors as the simulation that you intend to run, and is typically
run just before Enzo is called for this reason. In ring, each processor reads
in an equal fraction of the particle position and velocity information into a
list, flags the particles that belong in its simulation spatial domain, and
then passes its portion of the total list on to another processor. After each
portion of the list has made its way to every processor, each processor then
collects all of the particle and velocity information that belongs to it and
writes them out into files called PPos.nnnn and PVel.nnnn, where nnnn
is the processor number. Turning on the ParallelParticleIO flag in the Enzo
parameter file instructs Enzo to look for these files.

For the purpose of this example, you’re going to run ring and Enzo on 4
processors (this is a fixed requirement). The number of processors used in an
MPI job is set differently on each machine, so you’ll have to figure out how
that works for you. On some machines, you can request an ‘interactive queue’ to
run small MPI jobs. On others, you may have to submit a job to the batch queue,
and wait for it to run.

To start an interactive run, it might look something like this:

qsub -I -V -l walltime=00:30:00,size=4

This tells the queuing system that you want four processors total for a
half hour of wall clock time. You may have to wait a bit until
nodes become available, and then you will probably start out back
in your home directory. You then run ring on the particle files by
typing something like this:

mpirun -n 4 ./ring.exe pv ParticlePositions ParticleVelocities

This will then produce some output to your screen, and will
generate 8 files: PPos.0000 through PPos.0003 and PVel.0000 through
PVel.0003. Note that the ‘mpirun’ command may actually be ‘aprun’
or something similar. Consult your supercomputer’s documentation to
figure out what this command should really be.

Congratulations, you’re now ready to run your cosmology
simulation!

Running an Enzo cosmology simulation

After all of this preparation, running the simulation itself should
be straightforward. First, you need to have an Enzo parameter file.
Here is an example compatible with the inits file above:

#
AMR PROBLEM DEFINITION FILE: Cosmology Simulation (AMR version)
#
define problem
#
ProblemType = 30 // cosmology simulation
TopGridRank = 3
TopGridDimensions = 32 32 32
SelfGravity = 1 // gravity on
TopGridGravityBoundary = 0 // Periodic BC for gravity
LeftFaceBoundaryCondition = 3 3 3 // same for fluid
RightFaceBoundaryCondition = 3 3 3
#
problem parameters
#
CosmologySimulationOmegaBaryonNow = 0.044
CosmologySimulationOmegaCDMNow = 0.226
CosmologyOmegaMatterNow = 0.27
CosmologyOmegaLambdaNow = 0.73
CosmologySimulationDensityName = GridDensity
CosmologySimulationVelocity1Name = GridVelocities
CosmologySimulationVelocity2Name = GridVelocities
CosmologySimulationVelocity3Name = GridVelocities
CosmologySimulationParticlePositionName = ParticlePositions
CosmologySimulationParticleVelocityName = ParticleVelocities
CosmologySimulationNumberOfInitialGrids = 1
#
define cosmology parameters
#
ComovingCoordinates = 1 // Expansion ON
CosmologyHubbleConstantNow = 0.71 // in km/s/Mpc
CosmologyComovingBoxSize = 10.0 // in Mpc/h
CosmologyMaxExpansionRate = 0.015 // maximum allowed delta(a)/a
CosmologyInitialRedshift = 60.0 //
CosmologyFinalRedshift = 3.0 //
GravitationalConstant = 1 // this must be true for cosmology
#
set I/O and stop/start parameters
#
CosmologyOutputRedshift[0] = 25.0
CosmologyOutputRedshift[1] = 10.0
CosmologyOutputRedshift[2] = 5.0
CosmologyOutputRedshift[3] = 3.0
#
set hydro parameters
#
Gamma = 1.6667
PPMDiffusionParameter = 0 // diffusion off
DualEnergyFormalism = 1 // use total & internal energy
InterpolationMethod = 1 // SecondOrderA
CourantSafetyNumber = 0.5
ParticleCourantSafetyNumber = 0.8
FluxCorrection = 1
ConservativeInterpolation = 0
HydroMethod = 0
#
set cooling parameters
#
RadiativeCooling = 0
MultiSpecies = 0
RadiationFieldType = 0
StarParticleCreation = 0
StarParticleFeedback = 0
#
set grid refinement parameters
#
StaticHierarchy = 0 // AMR turned on!
MaximumRefinementLevel = 3
MaximumGravityRefinementLevel = 3
RefineBy = 2
CellFlaggingMethod = 2 4
MinimumEfficiency = 0.35
MinimumOverDensityForRefinement = 4.0 4.0
MinimumMassForRefinementLevelExponent = -0.1
MinimumEnergyRatioForRefinement = 0.4

#
set some global parameters
#
GreensFunctionMaxNumber = 100 // # of greens function at any one time

#
IO parameters
#

ParallelRootGridIO = 1
ParallelParticleIO = 1

Once you’ve saved this, you start Enzo by typing:

mpirun -n 4 ./enzo.exe -d Example_Cosmology_Sim.param >& output.log

The simulation will now run. The -d flag ensures a great deal of
output, so you may redirect it into a log file called output.log
for later examination. This particular simulation shouldn’t take
too long, so you can run this in the same 30 minute interactive job
you started when you ran inits. When the simulation is done, Enzo
will display the message “Successful run, exiting.”

Congratulations! If you’ve made it this far, you have now successfully
run a cosmology simulation using Enzo!

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Sample inits and Enzo parameter files

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	Getting Started with Enzo

Sample inits and Enzo parameter files

This page contains a large number of example inits and Enzo parameter
files that should cover any possible kind of Enzo cosmology simulation
that you are interested in doing. All should run with minimal
tinkering. They can be downloaded separately below, or as a single
tarball.

Note: unless otherwise specified, inits is run by calling

inits -d <name of inits parameter file>

and Enzo is run by calling

[mpirun ...] enzo -d <name of enzo parameter file>

In both cases, the -d flag displays debugging information, and can be
omitted. Leaving out the -d flag can significantly speed up Enzo
calculations. Also note that Enzo is an MPI-parallel program, whereas
inits is not.

Unigrid dark matter-only cosmology simulation. This is the
simplest possible Enzo cosmology simulation - a dark matter-only
calculation (so no baryons at all) and no adaptive mesh. See the inits
parameter file and Enzo parameter file.

AMR dark matter-only cosmology simulation. This is a dark
matter-only cosmology calculation (using the same initial conditions
as the previous dm-only run) but with adaptive mesh refinement turned
on. See the inits parameter file and Enzo parameter file.

Unigrid hydro+dark matter cosmology simulation (adiabatic). This
is a dark matter plus hydro cosmology calculation without adaptive
mesh refinement and no additional physics. See the inits parameter
file and Enzo parameter file.

AMR hydro+dark matter cosmology simulation (adiabatic). This is a
dark matter plus hydro cosmology calculation (using the same initial
conditions as the previous dm+hydro run)**with** adaptive mesh
refinement (refining everywhere in the simulation volume) and no
additional physics. See the inits parameter file and Enzo parameter
file.

AMR hydro+dark matter cosmology simulation (lots of physics).
This is a dark matter plus hydro cosmology calculation (using the same
initial conditions as the previous two dm+hydro runs) with
adaptive mesh refinement (refining everywhere in the simulation
volume) and including radiative cooling, six species primordial
chemistry, a uniform metagalactic radiation background, and
prescriptions for star formation and feedback. See the inits
parameter file and Enzo parameter file.

AMR hydro+dark matter nested-grid cosmology simulation (lots of
physics). This is a dark matter plus hydro cosmology calculation
with two static nested grids providing excellent spatial and dark
matter mass resolution for a single Local Group-sized halo and its
progenitors. This simulation only refines in a small subvolume of the
calculation, and includes radiative cooling, six species primordial
chemistry, a uniform metagalactic radiation background, and
prescriptions for star formation and feedback. All parameter files can
be downloaded in one single tarball. Note that inits works differently
for multi-grid setups. Instead of calling inits one time, it is called
N times, where N is the number of grids. For this example, where there
are three grids total (one root grid and two nested subgrids), the
procedure would be:

NohProblem2DAMR.tar.gz - 650 KB
NohProblem3D.tar.gz - 34 MB
NohProblem3DAMR.tar.gz - 126 MB
ProtostellarCollapse_Std.tar.gz - 826 KB
SedovBlast.tar.gz - 4.1 MB
SedovBlastAMR.tar.gz - 1.6 MB
ShockPool2D.tar.gz - 250 KB
ShockPool3D.tar.gz - 91 KB
ShockTube.tar.gz - 16 KB
StripTest.tar.gz - 4.1 MB
WavePool.tar.gz - 20 KB
ZeldovichPancake.tar.gz - 36 KB

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Writing Enzo Parameter Files

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	Getting Started with Enzo

Writing Enzo Parameter Files

Putting together a parameter file for Enzo is possibly the most
critical step when setting up a simulation, and is certainly the step
which is most fraught with peril. There are over 200 parameters that
one can set - see Enzo Parameter List for a complete listing. For
the most part, defaults are set to be sane values for cosmological
simulations, and most physics packages are turned off by default, so
that you have to explicitly turn on modules. All physics packages are
compiled into Enzo (unlike codes such as ZEUS-MP 1.0, where you have
to recompile the code in order to enable new physics).

It is inadvisable for a novice to put together a parameter file from
scratch. Several parameter files are available for download at
Sample inits and Enzo parameter files. The simulations include:

	dark matter-only unigrid and AMR simulations,

	dark matter + hydro unigrid and AMR simulations,

	an AMR dm + hydro simulation with multiple nested grids and a
limited refinement region.

In order to make the most of this tutorial it is advisable to have
one or more of these parameter files open while reading this page.
For the purposes of this tutorial we assume that the user is
putting together a cosmology simulation and has already generated
the initial conditions files using inits.

All parameters are put into a plain text file (one parameter per
line), the name of which is fed into Enzo at execution time at the
command line. Typically, a parameter is set by writing the
parameter name, an equals sign, and then the parameter value or
values, like this:

NumberOfBufferZones = 3

You must leave at least one space between the parameter, the equals
sign, and the parameter value. It’s fine if you use more than one
space - after the first space, whitespace is unimportant. All lines
which start with a # (pound sign) are treated as comments and
ignored. In addition, you can have inline comments by using the
same pound sign, or two forward slashes // after the parameter line.

NumberOfBufferZones = 3 // More may be needed depending on physics used.

Initialization parameters

Complete descriptions of all initialization parameters are given
here. The most fundamental initialization parameter you have to set
is ProblemType, which specifies the type of problem to be run, and
therefore the way that Enzo initiates the data. A cosmology
simulation is problem type 30. As started before, for the purposes
of this introduction I’m assuming that you are generating a
cosmology simulation, so you would put this line in the parameter
file:

ProblemType = 30

TopGridRank specifies the spatial dimensionality of your problem
(1, 2 or 3 dimensions), and must be set. TopGridDimensions
specifies the number of root grid cells along each axis. For a 3D
simulation with 128 grid cells along each axis on the root grid,
put this in the parameter file:

TopGridRank = 3
TopGridDimensions = 128 128 128

Additionally, you must specify the names of the initial conditions
files with contain the baryon density and velocity information and
the dark matter particle positions and velocities. These are
controlled via the parameters CosmologySimulationDensityName,
CosmologySimulationVelocity[123]Name (where 1, 2 and 3 correspond
to the x, y and z directions, respectively),
CosmologySimulationParticlePositionName and
CosmologySimulationParticleVelocityName. Assuming that the baryon
velocity information is all in a single file, and that the baryon
density and velocity file names are GridDensity and GridVelocities,
and that the particle position and velocity files are named
ParticlePositions and ParticleVelocities, these parameters would be
set as follows:

CosmologySimulationDensityName = GridDensity
CosmologySimulationVelocity1Name = GridVelocities
CosmologySimulationVelocity2Name = GridVelocities
CosmologySimulationVelocity3Name = GridVelocities
CosmologySimulationParticlePositionName = ParticlePositions
CosmologySimulationParticleVelocityName = ParticleVelocities

Some more advanced are parameters in the Initialization Parameters
section control domain and boundary value specifications. These
should NOT be altered unless you really, really know what you’re
doing!

Cosmology

Complete descriptions of all cosmology parameters are given here
and here. ComovingCoordinates determines whether comoving
coordinates are used or not. In practice, turning this off turns
off all of the cosmology machinery, so you want to leave it set to
1 for a cosmology simulation. CosmologyInitialRedshift and
CosmologyFinalRedshift control the start and end times of the
simulation, respectively. CosmologyHubbleConstantNow sets the
Hubble parameter, and is specified at z=0 in units of 100 km/s/Mpc.
CosmologyComovingBoxSize sets the size of the box to be simulated
(in units of Mpc/h) at z=0. CosmologyOmegaBaryonNow,
CosmologyOmegaMatterNow, CosmologyOmegaCDMNow and
CosmologyOmegaLambdaNow set the amounts of baryons, total matter,
dark matter and vacuum energy (in units of the critical density at
z=0). An addition to the standard baryon fields that can be
initialized, one can create a metal tracer field by turning on
CosmologySimulationUseMetallicityField. This is handy for
simulations with star formation and feedback (described below). For
example, in a cosmology simulation with box size 100 Mpc/h with
approximately the cosmological parameters determined by WMAP, which
starts at z=50 and ends at z=2, and has a metal tracer field, we
put the following into the parameter file:

ComovingCoordinates = 1
CosmologyInitialRedshift = 50.0
CosmologyFinalRedshift = 2.0
CosmologyHubbleConstantNow = 0.7
CosmologyComovingBoxSize = 100.0
CosmologyOmegaBaryonNow = 0.04
CosmologyOmegaMatterNow = 0.3
CosmologyOmegaCDMNow = 0.26
CosmologyOmegaLambdaNow = 0.7
CosmologySimulationUseMetallicityField = 1

Gravity and Particle Parameters

The parameter list sections on gravity particle positions are here
and here, respectively. The significant gravity-related parameters
are SelfGravity, which turns gravity on (1) or off (0) and
GravitationalConstant, which must be 1 in cosmological
simulations. BaryonSelfGravityApproximation controls whether
gravity for baryons is determined by a quick and reasonable
approximation. It should be left on (1) in most cases. For a
cosmological simulation with self gravity, we would put the
following parameters into the startup file:

SelfGravity = 1
GravitationalConstant = 1
BaryonSelfGravityApproximation = 1

We discuss some AMR and parallelization-related particle parameters
in later sections.

Adiabatic hydrodynamics parameters

The parameter listing section on hydro parameters can be found
here. The most fundamental hydro parameter that you can set is
HydroMethod, which lets you decide between the Piecewise Parabolic
Method (aka PPM; option 0), or the finite-difference method used in
the Zeus astrophysics code (option 2). PPM is the more advanced and
optimized method. The Zeus method uses an artificial viscosity-based
scheme and may not be suited for some types of work. When using PPM in
a cosmological simulation, it is important to turn
DualEnergyFormalism on (1), which makes total-energy schemes such
as PPM stable in a regime where there are hypersonic fluid flows,
which is quite common in cosmology. The final parameter that one must
set is Gamma, the ratio of specific heats for an ideal gas. If
MultiSpecies (discussed later in Radiative Cooling and UV Physics Parameters) is on, this is
ignored. For a cosmological simulation where we wish to use PPM and
have Gamma = 5/3, we use the following parameters:

HydroMethod = 0
DualEnergyFormalism = 1
Gamma = 1.66667

In addition to these three parameters, there are several others
which control more subtle aspects of the two hydro methods. See the
parameter file listing of hydro parameters for more information on
these.

One final note: If you are interested in performing simulations
where the gas has an isothermal equation of state (gamma = 1), this
can be approximated without crashing the code by setting the
parameter Gamma equal to a number which is reasonably close to one,
such as 1.001.

AMR Hierarchy Control Parameters

These parameters can be found in the parameter list page here. They
control whether or not the simulation uses adaptive mesh
refinement, and if so, the characteristics of the adaptive meshing
grid creation and refinement criteria. We’ll concentrate on a
simulation with only a single initial grid first, and then discuss
multiple levels of initial grids in a subsection.

The most fundamental AMR parameter is StaticHierarchy. When this is
on (1), the code is a unigrid code. When it is off (0), adaptive
mesh is turned on. RefineBy controls the refinement factor - for
example, a value of 2 means that a child grid is twice as highly
refined as its parent grid. It is important to set RefineBy to 2
when using cosmology simulations - this is because if you set it to
a larger number (say 4), the ratio of particle mass to gas mass in
a cell grows by a factor of eight during each refinement, causing
extremely unphysical effects.
MaximumRefinementLevel determines how many possible levels of
refinement a given simulation can attain, and
MaximumGravityRefinementLevel defines the maximum level at which
gravitational accelerations are computed. More highly refined
levels have their gravitational accelerations interpolated from
this level, which effectively provides smoothing of the
gravitational force on the spatial resolution of the grids at
MaximumGravityRefinementLevel. A simulation with AMR turned on,
where there are 6 levels of refinement (with gravity being smoothed
on level 4) and where each child grid is twice as highly resolved
as its parent grid would have these parameters set as follows:

StaticHierarchy = 0
RefineBy = 2
MaximumRefinementLevel = 6
MaximumGravityRefinementLevel = 4

Once the AMR is turned on, you must specify how and where the
hierarchy
refines. The parameter CellFlaggingMethod controls the method in
which cells are flagged, and can be set with multiple values. We
find that refining by baryon and dark matter mass (options 2 and 4)
are typically useful in cosmological simulations. The parameter
MinimumOverDensityForRefinement allows you to control the
overdensity at which a given grid is refined, and can is set with
multiple values as well. Another very useful parameter is
MinimumMassForRefinementLevelExponent, which modifies the cell
masses/overdensities used for refining grid cells. See the
parameter page for a more detailed explanation.
Leaving this with a value of 0.0 ensures that gas mass resolution
in dense regions remains more-or-less Lagrangian in nature.
Negative values make the refinement super-Lagrangian (ie, each
level has less gas mass per cell on average than the coarser level
above it) and positive values make the refinement sub-lagrangian.
In an AMR simulation where the AMR triggers on baryon and dark
matter overdensities in a given cell of 4.0 and 8.0, respectively,
where the refinement is slightly super-Lagrangian, these paramaters
would be set as follows:

CellFlaggingMethod = 2 4
MinimumOverDensityForRefinement = 4.0 8.0
MinimumMassForRefinementLevelExponent = -0.1

At times it is very useful to constrain your simulation such that
only a small region is adaptively refined (the default is to refine
over an entire simulation volume). For example, if you wish to
study the formation of a particular galaxy in a very large volume,
you may wish to only refine in the small region around where that
galaxy forms in your simulation in order to save on computational
expense and dataset size. Two parameters, RefineRegionLeftEdge and
RefineRegionRightEdge allow control of this. For example, if we
only want to refine in the inner half of the volume (0.25 - 0.75
along each axis), we would set these parameters as follows:

RefineRegionLeftEdge = 0.25 0.25 0.25
RefineRegionRightEdge = 0.75 0.75 0.75

This pair of parameters can be combined with the use of nested
initial grids (discussed in the next subsection) to get simulations
with extremely high dark matter mass and spatial resolution in a
small volume at reasonable computational cost.

Multiple nested grids

At times it is highly advantageous to use multiple nested grids.
This is extremely useful in a situation where you are interested in
a relatively small region of space where you need very good dark
matter mass resolution and spatial resolution while at the same
time still resolving large scale structure in order to preserve
gravitational tidal forces. An excellent example of this is
formation of the first generation of objects in the universe, where
we are interested in a relatively small (106 solar mass)
halo which is strongly tidally influenced by the large-scale
structure around it. It is important to resolve this halo with a
large number of dark matter particles in order to reduce frictional
heating, but the substructure of the distant large-scale structure
is not necessarily interesting, so it can be resolved by very
massive particles. One could avoid the complication of multiple
grids by using a single very large grid - however, this would be
far more computationally expensive.

Let us assume for the purpose of this example that in addition to
the initial root grid grids (having 128 grid cells along each axis)
there are two subgrids, each of which is half the size of the one
above it in each spatial direction (so subgrid 1 spans from
0.25-0.75 in units of the box size and subgrid 2 goes from
0.375-0.625 in each direction). If each grid is twice as highly
refined spatially as the one above it, the dark matter particles on
that level are 8 times smaller, so the dark matter mass resolution
on grid #2 is 64 times better than on the root grid, while the
total number of initial grid cells only increases by a factor of
three (since each grid is half the size, but twice as highly
refined as the one above it, the total number of grid cells remains
the same). Note: See the page on generating initial conditions for
more information on creating this sort of set of nested grids.

When a simulation with more than one initial grid is run, the total
number of initial grids is specified by setting
CosmologySimulationNumberOfInitialGrids. The parameter
CosmologySimulationGridDimension[#] is an array of three integers
setting the grid dimensions of each nested grid, and
CosmologySimulationGridLeftEdge[#] and
CosmologySimulationGridRightEdge[#] specify the left and right
edges of the grid spatially, in units of the box size. In the last
three parameters, “#” is replaced with the grid number. The root
grid is grid 0. None of the previous three parameters need to be
set for the root grid. For the setup described above, the parameter
file would be set as follows:

CosmologySimulationNumberOfInitialGrids = 3
CosmologySimulationGridDimension[1] = 128 128 128
CosmologySimulationGridLeftEdge[1] = 0.25 0.25 0.25
CosmologySimulationGridRightEdge[1] = 0.75 0.75 0.75
CosmologySimulationGridLevel[1] = 1
CosmologySimulationGridDimension[2] = 128 128 128
CosmologySimulationGridLeftEdge[2] = 0.375 0.375 0.375
CosmologySimulationGridRightEdge[2] = 0.625 0.625 0.625
CosmologySimulationGridLevel[2] = 2

Multiple initial grids can be used with or without AMR being turned
on. If AMR is used, the parameter MinimumOverDensityForRefinement
must be modified as well. It is advisable to carefully read the
entry for this parameter in the parameter list (in this section).
The minimum overdensity
needs to be divided by r(d*l), where r is the refinement
factor, d is the dimensionality, and l is the zero-based highest
level of the initial grids. So if we wish for the same values for
MinimumOverDensityForRefinement used previous to apply on the most
highly refined grid, we must divide the set values by
2(3*2) = 64. In addition, one should only refine on the
highest level, so we must reset RefineRegionLeftEdge and
RefineRegionRightEdge. The parameters would be reset as follows:

RefineRegionLeftEdge = 0.375 0.375 0.375
RefineRegionRightEdge = 0.625 0.625 0.625
MinimumOverDensityForRefinement = 0.0625 0.125

A note: When creating multi-level intial conditions, make sure that
the initial conditions files for all levels have the same file name
(ie, GridDensity), but that each file has an extension which is an
integer corresponding to its level. For example, the root grid
GridDensity file would be GridDensity.0, the level 1 file would be
GridDensity.1, and so forth. The parameters which describe file
names (discussed above in the section on initialization parameters)
should only have the file name to the left of the period the period
(as in a simulation with a single initial grid), ie,

CosmologySimulationDensityName = GridDensity

Nested Grids and Particles

When initializing a nested grid problem, there can arise an issue of
lost particles as a result of running ring. Please see
Particles in Nested Grid Cosmology Simulations for more information.

I/O Parameters

These parameters, defined in more detail in
Controlling Enzo data output, control all aspects of Enzo’s data
output. One can output data in a cosmological simulation in both a
time-based and redshift-based manner. To output data regularly in
time, one sets dtDataDump to a value greater than zero. The size
of this number, which is in units of Enzo’s internal time variable,
controls the output frequency. See the Enzo user’s manual section on
output format for more information on physical units. Data can be
output at specific redshifts as controlled by
CosmologyOutputRedshift[#], where # is the number of the output
dump (with a maximum of 10,000 zero-based numbers). The name of the
time-based output files are controlled by the parameter
DataDumpName and the redshift-based output files have filenames
controlled by RedshiftDumpName. For example, if we want to output
data every time the code advances by dt=2.0 (in code units) with file
hierarchiess named time_0000, time_0001, etc., and ALSO output
explicitly at redshifts 10, 5, 3 and 1 with file hierarchy names
RedshiftOutput0000, RedshiftOutput0001, etc., we would set
these parameters as follows:

dtDataDump = 2.0
DataDumpName = time_
RedshiftDumpName = RedshiftOutput
CosmologyOutputRedshift[0] = 10.0
CosmologyOutputRedshift[1] = 5.0
CosmologyOutputRedshift[2] = 3.0
CosmologyOutputRedshift[3] = 1.0

Note that Enzo always outputs outputs data at the end of the
simulation, regardless of the settings of dtDataDump and
CosmologyOutputRedshift.

Radiative Cooling and UV Physics Parameters

Enzo comes with multiple ways to calculate baryon cooling and a
metagalactic UV background, as described in detail here. The
parameter RadiativeCooling controls whether or not a radiative
cooling module is called for each grid. The cooling is calculated
either by assuming equilibrium cooling and reading in a cooling
curve, or by computing the cooling directly from the species
abundances. The parameter MultiSpecies controls which cooling
module is called - if MultiSpecies is off (0) the equilibrium model
is assumed, and if it is on (1 or 2) then nonequilibrium cooling is
calculated using either 6 or 9 ionization states of hydrogen and
helium (corresponding to MultiSpecies = 1 or 2, respectively). The
UV background is controlled using the parameter RadiationFieldType.
Currently there are roughly a dozen backgrounds to choose from.
RadiationFieldType is turned off by default, and can only be used
when Multispecies = 1. For example, if we wish to use a
nonequilibrium cooling model with a Haardt and Madau background
with qalpha= -1.8, we would set these parameters as follows:

RadiativeCooling = 1
MultiSpecies = 1
RadiationFieldType = 2

Star Formation and Feedback Physics Parameters

Enzo has multiple routines for star formation and feedback. Star
particle formation and feedback are controlled separately, by the
parameters StarParticleCreation and StarParticleFeedback.
Multiple types of star formation and feedback can be used, e.g. models
for Pop III stars for metal-free gas and models for Pop II stars for
metal-enriched gas. These routines are disabled when these parameters
are set equal to 0. These parameters are bitwise to allow multiple
types of star formation routines can be used in a single
simulation. For example if methods 1 and 3 are desired, the user would
specify 10 (21+ 23), or if methods 0, 1 and 4
are wanted, this would be 19 (20+ 21+ 24). See Star Formation and Feedback Parameters for more details.

They are turned on when the i-th bit is flagged. The value of 2 is
the recommended value. The most commonly used routines (2) are based
upon an algorithm by Cen & Ostriker, and there are a number of free
parameters. Note that it is possible to turn star particle formation
on while leaving feedback off, but not the other way around.

For the star particle creation algorithm, stars are allowed to form
only in cells where a minimum overdensity is reached, as defined by
StarMakerOverDensityThreshold. Additionally, gas can only turn into
stars with an efficiency controlled by StarMakerMassEfficiency and
at a rate limited by StarMakerMinimumDynamicalTime, and the minimum
mass of any given particle is controlled by the parameter
StarMakerMinimumStarMass, which serves to limit the number of star
particles. For example, if we wish to use the “standard” star
formation scenario where stars can only form in cells which are at
least 100 times the mean density, with a minimum dynamical time of
106 years and a minimum mass of 107 solar
masses, and where only 10% of the baryon gas in a cell can be
converted into stars in any given timestep, we would set these
parameters as follows:

StarParticleCreation = 2
StarMakerOverDensityThreshold = 100.0
StarMakerMassEfficiency = 0.1
StarMakerMinimumDynamicalTime = 1.0e6
StarMakerMinimumStarMass = 1.0e7

Star particles can provide feedback into the Inter-Galactic Medium via stellar winds,
thermal energy and metal pollution. The parameter
StarMassEjectionFraction controls the fraction of the total initial
mass of the star particle which is eventually returned to the gas
phase. StarMetalYield controls the mass fraction of metals produced
by each star particle that forms, and StarEnergyToThermalFeedback
controls the fraction of the rest-mass energy of the stars created
which is returned to the gas phase as thermal energy. Note that the
latter two parameters are somewhat constrained by theory and
observation to be somewhere around 0.02 and 1.0e-5, respectively.
The ejection fraction is poorly constrained as of right now. Also,
metal feedback only takes place if the metallicity field is turned
on (CosmologySimulationUseMetallicityField = 1). As an example, if
we wish to use the ‘standard’ star feedback where 25% of the total
stellar mass is returned to the gas phase, the yield is 0.02 and
10-5 of the rest mass is returned as thermal energy, we
set our parameters as follows:

StarParticleFeedback = 2
StarMassEjectionFraction = 0.25
StarMetalYield = 0.02
StarEnergyToThermalFeedback = 1.0e-5
CosmologySimulationUseMetallicityField = 1

When using the star formation and feedback algorithms it is
important to consider the regime of validity of our assumptions.
Each “star particle” is supposed to represent an ensemble of stars,
which we can characterize with the free parameters described above.
This purely phenomenological model is only reasonable as long as
the typical mass of the star particles is much greater than the
mass of the heaviest stars so that the assumption of averaging over
a large population is valid. When the typical star particle mass
drops to the point where it is comparable to the mass of a large
star, these assumptions must be reexamined and our algorithms
reformulated.

IO Parallelization Options

One of Enzo’s great strengths is that it is possible to do
extremely large simulations on distributed memory machines. For
example, it is possible to intialize a 10243 root grid
simulation on a linux cluster where any individual node has 1 or 2
GB of memory, which is on the order of 200 times less than the
total dataset size! This is possible because the reading of initial
conditions and writing out of data dumps is fully parallelized - at
startup, when the parameter ParallelRootGridIO is turned on each
processor only reads the portion of the root grid which is within
its computational domain, and when ParallelParticleIO is turned on
each processor only reads in the particles within its domain
(though preprocessing is needed - see below). Additionally, the
parameter Unigrid should be turned on for simulations without AMR,
as it saves roughly a factor of two in memory on startup, allowing
the code to perform even larger simulations for a given computer
size. If we wish to perform an extremely large unigrid simulation
with parallel root grid and particle IO, we would set the following
parameters:

ParallelParticleIO = 1
ParallelRootGridIO = 1
Unigrid = 1

AMR simulations can be run with ParallelRootGridIO and
ParallelParticleIO on, though you must be careful to turn off the
Unigrid parameter. In addition, it is important to note that in the
current version of Enzo you must run the program called “ring” on
the particle position and velocity files before Enzo is started in
order to take advantage of the parallel particle IO. Assuming the
particle position and velocity files are named ParticlePositions
and ParticleVelocities, respectively, this is done by running:

mpirun -np [N] ring ParticlePositions ParticleVelocities

Where mpirun is the executable responsible for running MPI programs
and “-np [N]” tells the machine that there are [N] processors. This
number of processors must be the same as the number which Enzo will
be run with!

Notes

This page is intended to help novice Enzo users put together parameter
files for their first simulation and therefore is not intended to be
an exhaustive list of parameters nor a complete description of each
parameter mentioned. It would be wise to refer to the Enzo user
guide’s Enzo Parameter List for a more-or-less complete list of
AMR parameters, some of which may be extremely useful for your
specific application.

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Data Analysis Basics

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	Getting Started with Enzo

Data Analysis Basics

Data analysis in Enzo can be complicated. There are excellent premade packages
available for doing Enzo data analysis (see SupportingCodes.). However,
it is likely that your data analysis needs will grow beyond these tools.

HDF5 Tools

Enzo reads in initial conditions files and outputs simulation data using the
HDF5 [http://www.hdfgroup.org/] structured data format (created and
maintained by the NCSA HDF group). Though this format takes a bit more effort
to code than pure C/C++ binary output, we find that the advantages are worth
it. Unlike raw binary, HDF5 is completely machine-portable and the HDF5
library takes care of error checking. There are many useful standalone
utilities included in the HDF5 package that allow a user to examine the
contents and structure of a dataset. In addition, there are several
visualization and data analysis packages that are HDF5-compatible. See the
page on Data Vizualization for more information about this. The NCSA HDF group
has an excellent tutorial on working with HDF5.

Note that as of the Enzo 2.0 code release, Enzo still supports reading the HDF4
data format, but not writing to it. We strongly suggest that new users
completely avoid this and use the HDF5 version instead. Enzo’s parallel IO
only works with HDF5, and we are encouraging users migrate as soon as is
feasible.

Using YT to Analyze Data

If you have installed YT [http://yt.enzotools.org/] along with
Enzo (as suggested in the
build instructions Obtaining and Building Enzo), you
should be able to use it to find halos, examine profiles, prepare
plots and handle data directly via physically meaningful objects.
Documentation [http://yt.enzotools.org/doc/], a
wiki [http://yt.enzotools.org/wiki] and a
mailing list [http://lists.spacepope.org/listinfo.cgi/yt-users-spacepope.org]
are available for support and assistance with installation and
usage as well as a brief introduction in these documents Analyzing With YT

Analysis with VisIt

Another tool that has a native reader for Enzo data is
VisIt [https://wci.llnl.gov/codes/visit/], a parallel VTK-based
visualization and analysis tool.

From the VisIt Users website [http://visitusers.org/]:

VisIt is a free interactive parallel visualization and graphical
analysis tool for viewing scientific data on Unix and PC platforms.
Users can quickly generate visualizations from their data, animate
them through time, manipulate them, and save the resulting images
for presentations. VisIt contains a rich set of visualization
features so that you can view your data in a variety of ways. It
can be used to visualize scalar and vector fields defined on two-
and three-dimensional (2D and 3D) structured and unstructured
meshes. VisIt was designed to handle very large data set sizes in
the tera- to peta-scale range and yet can also handle small data
sets in the kilobyte range.

The caveat is that as of version 1.11.2, VisIt only understands the
original unpacked AMR format. However, the packed-AMR is in the
VisIt development version, and will be included in the next release
(1.12). If would like this functionality sooner, it’s not too much
work. Here’s how to begin:

	Download the following:
	The
1.11.2 source distribution [https://wci.llnl.gov/codes/visit/1.11.2/visit1.11.2.tar.gz]

	The
1.11.2 build_visit script [https://wci.llnl.gov/codes/visit/1.11.2/build_visit]

	An updated
avtEnzoFileFormat.C [https://email.ornl.gov/pipermail/visit-developers/attachments/20090406/b8dc7fe5/avtEnzoFileFormat.C]

	An updated
avtEnzoFileFormat.h [https://email.ornl.gov/pipermail/visit-developers/attachments/20090406/b8dc7fe5/avtEnzoFileFormat.h]

	Untar the source tar file,

	replace the two files named avtEnzo* in
visit1.11.2/src/databases/Enzo/ with the ones you’ve just
downloaded, and

	retar the file, keeping the same directory structure.

(You can do this without untarring and retarring, but this is a bit
clearer for those not familiar with tar.)
From this point, you can
build and install VisIt using the build_visit script [http://visitusers.org/index.php?title=Build_visit_overview].
When you do this, remember to do two things:

	Use the
TARBALL [http://visitusers.org/index.php?title=Build_visit_overview#Tarball_.28-t_CLI_option.2C_VISIT_FILE_env_variable.29]
option to specify the tar file for the script to unpack. Failing to
do this will cause the script to download a new tar file, without
the changes that you need.

	Select both
HDF5 [http://visitusers.org/index.php?title=Build_visit_overview#HDF5_.28–hdf5_CLI_option.2C_HDF5_FILE.2C_HDF5_VERSION.2C_and_HDF5_DIR__env_variables.29]
and
HDF4 [http://visitusers.org/index.php?title=Build_visit_overview#HDF4_.28–hdf4_CLI_option.2C_HDF4_FILE.2C_HDF4_VERSION.2C_and_HDF4_DIR__env_variables.29]
as optional third-party libraries. This may not strictly be
necessary, if you already have HDF5 and HDF4 installed on your
system, but the script isn’t clear on how to specify which HDF5
installation to use. (HDF4 needs to be available to satisfy a
dependency check for building the Enzo reader. We’ll ask to have
this updated in future versions of VisIt.)

Writing your own tools, I - the Enzo Grid Hierarchy

Enzo outputs each individual adaptive mesh block as its own grid
file. Each of these files is completely self-contained, and has
information about all of the grid cells that are within that volume
of space. Information on the size and spatial location of a given
grid file can be obtained from the hierarchy file, which has the
file extension ”.hierarchy”. This ascii file has a listing for each
grid that looks something like this:

Grid = 26
GridRank = 3
GridDimension = 34 22 28
GridStartIndex = 3 3 3
GridEndIndex = 30 18 24
GridLeftEdge = 0.5 0.28125 0.078125
GridRightEdge = 0.71875 0.40625 0.25
Time = 101.45392321467
SubgridsAreStatic = 0
NumberOfBaryonFields = 5
FieldType = 0 1 4 5 6
BaryonFileName = RedshiftOutput0011.grid0026
CourantSafetyNumber = 0.600000
PPMFlatteningParameter = 0
PPMDiffusionParameter = 0
PPMSteepeningParameter = 0
NumberOfParticles = 804
ParticleFileName = RedshiftOutput0011.grid0026
GravityBoundaryType = 2
Pointer: Grid[26]->NextGridThisLevel = 27

GridRank gives the dimensionality of the grid (this one is 3D),
GridDimension gives the grid size in grid cells, including ghost
zones. GridStartIndex and GridEndIndex give the starting and ending
indices of the non-ghost zone cells, respectively. The total size
of the baryon datasets in each grid along dimension i is (1+
GridEndIndex[i] - GridStartIndex[i]). GridLeftEdge and
GridRightEdge give the physical edges of the grids (without ghost
zones) in each dimension. NumberOfParticles gives the number of
dark matter particles (and/or star particles, for simulations
containing star particles) in a given grid. Note that when there
are multiple grids covering a given region of space at various
levels of resolution, particles are stored in the most highly
refined grid. BaryonFileName is the name of the actual grid file,
and should be the same as ParticleFileName. Time is the simulation
time, and should be the same as InitialTime in the parameter file
for the same data dump. The other parameters for each entry are
more advanced and probably not relevant for simple data analysis.

Possibly the greatest source of potential confusion in Enzo’s
datasets is the overlap of grid cells. In a simulation, when a
given grid is further refined, the coarse cells which have not been
refined are still kept. The solution to the hydro and gravity
equations are still calculated on that level, but are updated with
information from more highly refined levels. What this is means is
that a volume of space which has been refined beyond the root grid
is covered by multiple grid patches at different levels of
resolution. Typically, when doing analysis you only want the most
highly refined information for a given region of space (or the most
highly refined up to a certain level) so that you don’t
double-count (or worse) the gas in a given cell. Look at this
example analysis code.

Writing your own tools, II - Enzo Physical Units

Yet another significant source of confusion is the units that Enzo
uses. When doing a cosmology simulation, the code uses a set of
units that make most quantities on the order of unity (in
principle). The Enzo manual section on
the code output format Enzo Output Formats
explains how to convert code units to cgs units. However, there are
some subtleties:

	Density fields

	All density fields are in the units described in the AMR guide
except electron density. Electron density is only output when
MultiSpecies is turned on, and in order to convert the electron
density to cgs it must be multiplied by the code density conversion
factor and then (m:sub:e/m:sub:p), where
m:sub:eand m:sub:pare the electron
and proton rest masses (making electron density units different
from the other fields by a factor of m:sub:e/m:sub:p).
The reason this is
done is so that in the code the electron density can be computed
directly from the abundances of the ionized species.

	Energy fields

	There are two possible energy fields that appear in the code - Gas
energy and total energy. Both are in units of specific energy,
ie, energy per unit mass. When Zeus hydro is being used
(HydroMethod = 2, there should be only one energy field - “total
energy”. This is a misnomer - the Zeus hydro method only follows
the specific internal (ie, thermal) energy of the gas explicitly.
When the total energy is needed, it is calculated from the
velocities. When PPM is used (HydroMethod = 0) the number of energy
fields depends on whether or not DualEnergyFormalism is turned on
or off. If it is ON (1), there is a “gas energy” field and a “total
energy” field, where “gas energy” is the specific internal energy
and “total energy” is “gas energy” plus the specific kinetic energy
of the gas in that cell. If DualEnergyFormalism is OFF (0), there
should only be “total energy”, which is kinetic+internal specific
energies. Confused yet?

	Particle mass field

	Particle “masses” are actually stored as densities. This is to
facilitate calculation of the gravitational potential. The net
result of this is that, in order to calculate the stored particle
“mass” to a physical mass, you must first multiply this field by the volume of
a cell in which the particle resides.
Remember that particle data is only stored in the most refined grid that
covers that portion of the simulational volume.

When the simulation is done, Enzo will display the message
“Successful run, exiting.”
Enzo is a complicated code, with a similarly complicated output
format. See the Enzo User Guide page on
the Enzo output format Enzo Output Formats for
more information on the data outputs.

Congratulations! If you’ve made it this far, you have now
successfully run a simulation using Enzo!

Example Data and Analysis

The sample data generated by this simulation is
available online [http://lca.ucsd.edu/software/enzo/data/cookbook/].
You can use it as sample data for the the
YT tutorial [http://yt.enzotools.org/doc/orientation.html].

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Controlling Enzo data output

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	Getting Started with Enzo

Controlling Enzo data output

How and when Enzo outputs data is described below. There are five ways to
control when data is output, two output formats, and two pitfalls when
determining how to output data from your Enzo simulation.

Data Formats and Files

There are two output formats for Enzo data. In both cases, each
data dump gets its own directory.

Each data dump writes several key files. NNNN denotes the dump
number (i.e. 0001) and basename is something like RedshiftOutput or
data or DD}.

All output files are also restart files. It’s not necessarily wise
to write in 32 bit format if you’re computing in 64, though, as
you’ll lose all the extra precision when you restart. (These are
makefile flags.)

basenameNNNN:

The parameter file. This contains general simulation parameters,
dump time, cycle, and all the parameters defined here. It's worth
your time to be familiar with what's in this file.

basenameNNNN.hierarchy:

The hierarchy file in text format. Contains a description of the hierarchy. One
entry for each grid, including information like the Grid Size, the
position in the volume, it's position in the hierarchy.

basenameNNNN.boundary:

A description of the boundary (plain text.) Basically a meta
description and filename for the next file

basenameNNNN.boundary.hdf5:

Actually contains the boundary information.

basenameNNNN.harrays:

The hierarchy of grids stored in HDF5 binary format.

Packed AMR

This is the default output format. Each processor outputs all the grids it owns.
In addition to the parameter, hierarchy, and boundary files which may or may
not be described elsewhere, data is output in one basenameNNNN.taskmapCCCC}
file for each processor, which contains a map between grid number and HDF5
file, and one basenameNNNN.cpuCCCC for each processor NNNN and CCCC are the
dump number and cpu number, respectively.

basenameNNNN.cpuCCCC is an HDF5 file which contains an HDF5 group for each
grid. Each grid in turn contains a dataset for each of the fields in the
simulation.

~/DD0100>h5ls data0100.cpu0003
Grid00000002 Group
Grid00000026 Group
~/DD0100>h5ls data0100.cpu0003/Grid00000002
Density Dataset {16, 16, 32}
z-velocity Dataset {16, 16, 32}

Pathnames

In previous versions of Enzo, the fully-qualified path to each file was output
in the .hierarchy file, which requires modifying the .hierarchy file
every time the data was moved. This has changed to be only the relative path
to each data file, which largely eliminates the problem. To restore the old
behavior, examine the parameters GlobalDir and LocalDir.

Timing Methods

There are 6 ways to trigger output from Enzo.

Cycle Based Output

CycleSkipDataDump = N
CycleLastDataDump = W
DataDumpName = data

One can trigger output every N cycles starting with cycle W using
CycleSkipDataDump and CycleLastDataDump. Outputs are put in the
directory DD0000 (or DD0001, etc.) and the basename is determined
by DataDumpName.

CycleSkipDataDump <= 0 means cycle based output is skipped. The
default is 0.

Pitfall 2: CycleLastDataDump defaults to zero and is incremented by
CycleSkipDataDump every time output is done. If you change the
value of CycleSkipDataDump and neglect to change CycleLastDataDump,
Enzo will dump as long as CycleNumber >= CycleSkipDataDump +
CycleLastDataDump. (So if you change CycleSkipDataDump from 0 to 10
from a Redshift dump at n=70, you’ll get an output every timestep
for 7 timesteps.)

Time Based Output

TimeLastDataDump = V
dtDataDump = W

Exactly like Cycle based output, but triggered whenever time >=
TimeLastDataDump + dtDataDump. The same pitfall applies.

Redshift Based Output

CosmologyOutputRedshift[0] = 12
CosmologyOutputRedshiftName[0] = Redshift12
RedshiftDumpName = RedshiftOutput

Outputs at the specified redshift. Any number of these can be
specified.

CosmologyOutputRedshift[i] is the only necessary parameter, and
is the ith redshift to output.

Any outputs with CosmologyOutputRedshiftName[i] specified has
that name used for the output, and no number is appended. (so if
CosmologyOutputRedshiftName[6] = BaconHat, the outputs will be
BaconHat, BaconHat.hierarchy, etc.)

If CosmologyOutputRedshiftName[i] is omitted, RedshiftDumpName is
used for the basename, and the output number is taken from the
array index. (So CosmologyOutputRedshift[19] = 2.34 and
RedshiftDumpName = MonkeyOnFire, at dump will be made at z=2.34
with files called MonkeyOnFire0019.hierarchy, etc.)

Force Output Now

The following two options are run time driven. These are especially
useful for very deep simulations that spend the majority of their
time on lower levels. Note that unless you have the parameter
FileDirectedOutput turned on, these will not be available.

To force an output as soon as the simulation finished the next step
on the finest resolution, make a file called outputNow:

touch outputNow

This will remove the file as soon as the output has finished.

Sub Cycle Based Output

To get the simulation to output every 10 subsycles (again at the
finest level of resolution) put the number of subcycles to skip in
a file called subcycleCount:

echo 10 > subcycleCount

Time Based Interpolated Output

Even when you are running simulations with a long dtDataDump, sometimes you may
want to see or analyze the interim datadumps. Using dtInterpolatedDataDump,
you can control Enzo to check if it should start outputting interpolated data
based on the time passed (dtInterpolatedDataDump < dtDataDump).

dtDataDump = 1e-4
dtInterpolatedDataDump = 1e-5

This is mostly for making movies or looking at the interim data where the
TopGrid dt is too long, and in principle, this output shouldn’t be used for
restart.

Friendly Note on Data Output

Enzo is content to output enough data to fill up a hard drive –
for instance, your home directory. This should be noted before
output parameters are set, particularly the Sub Cycle outputs, as
Enzo has no prohibition against causing problems with quotas and
file system size.

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 User Guide

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

User Guide

This document provides a brief description of the compilation and
operation of Enzo, a structured Adaptive Mesh Refinement [http://en.wikipedia.org/wiki/Adaptive_mesh_refinement] (SAMR, or
more loosely AMR) code which is primarily intended for use in
astrophysics and cosmology. The User’s Guide is intended to explain
how to compile and run Enzo, the initial conditions generation code
and the various analysis tools bundled with Enzo. The instructions on
actually running the code are not comprehensive in that they are not
machine or platform-specific. Arguably the most useful and important
piece of this guide is Enzo Parameter List, which contains
descriptions of all of the roughly 300 possible input parameters (as
of September 2008). For more detailed information on the Enzo
algorithms and on running Enzo on different platforms, you should
refer to the Getting Started with Enzo. Detailed information on the
algorithms used in Enzo will be available in the method paper
(unreleased as of September 2008). In the meantime, see the
Enzo Primary References for more concrete Enzo information.

This guide (and Enzo itself) was originally written by Greg
Bryan. Since the original writing of both the simulation code and the
User’s Guide, the maintenance of Enzo and its associated tools and
documentation was for some time largely driven by the Laboratory for
Computational Astrophysics [http://lca.ucsd.edu] at The University
of California, San Diego [http://www.ucsd.edu], but it is now a
fully open source community with developers from Stanford, Columbia,
Princeton, UCSD, University of Colorado, Michigan State, UC Berkeley,
and many other universities. Your input in improving both the code
and the User’s Guide is appreciated – developement of the code is
driven by working researchers, and we encourage everyone who has made
useful changes to contribute those changes back to the community and
to participate in the collaborative development of the code. Email
inquiries and comments should be directed to the Enzo Users’ List [http://groups.google.com/group/enzo-users]. Thank you!

	Executables, Arguments, and Outputs
	enzo

	inits

	ring

	enzohop

	anyl

	Running Enzo
	Restarting

	Monitoring information

	Debugging information

	Test Problems

	Enzo Test Suite
	What’s in the test suite?

	How to run the test suite

	How to add a new test to the library

	What to do if you fix a bug in Enzo

	How to create a new set of reference calculations

	Creating Cosmological Initial Conditions
	Using inits

	Using mpgrafic

	Running Large Simulations
	Important Parameters

	Compile-time options

	Enzo Output Formats
	Summary of Files

	Output Units

	Streaming Data Format

	Analyzing With YT
	What is YT?

	Making Slices

	Making Simple Radial Profiles

	More Information

	Simulation Names and Identifiers
	MetaDataIdentifier

	MetaDataSimulationUUID

	MetaDataDatasetUUID

	MetaDataInitialConditionsUUID

	Still to be done

	Embedded Python
	How To Compile

	How it Works

	How to Run

	Which Operations Work

	Things Not Yet Done

	The Enzo Hierarchy File - Explanation and Usage
	HDF5-formatted Hierarchy File

	Controlling the Hierarchy File Output Format

	Enzo Flow Chart, Source Browser
	Flow Chart Errors

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Executables, Arguments, and Outputs

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	User Guide

Executables, Arguments, and Outputs

This page is a summary of all of the binaries that are created
after make; make install is run in the Enzo code bundle. They
should be located in the bin directory. Links to the various pages
of the manual that describe a particular binary are also included.

enzo

This is the main simulation code executable. See Running Enzo
for more detailed information.

When an Enzo simulation is run, at every datastep several files are output,
inserted into subdirectories. The most important of these are the files with
no extension and those ending in .hierarchy, of which there will be one of
each for each datadump. For more information on the format of Enzo output, see
Enzo Output Formats.

usage: ./enzo.exe [options] param_file
 options are:
 -d(ebug)
 -r(estart)
 -x(extract)
 -l(evel_of_extract) level
 -p(roject_to_plane) dimension
 -P(roject_to_plane version 2) dimension
 -m(smooth projection)
 -o(utput as particle data)
 -h(elp)
 -i(nformation output)
 -s(tart index region) dim0 [dim1] [dim2]
 -e(nd index region) dim0 [dim1] [dim2]
 -b(egin coordinate region) dim0 [dim1] [dim2]
 -f(inish coordinate region) dim0 [dim1] [dim2]

inits

This is the initial conditions generator. See Using inits for more
detailed information. Initial conditions with a single initial grid or multiple
nested grids can be created with this executable. Output file names are
user-specified, but in a standard cosmology simulation with a single initial
grid there should be a file containing baryon density information, another
containing baryon velocity information, and two more files containing particle
position and velocity information. Simulations with multiple grids will have a
set of these files for each level, appended with numbers to make them unique.

usage: inits [options] param_file
 options are:
 -d(ebug)
 -s(ubgrid) param_file

ring

ring must be run on the simulation particle position and velocity
information before a simulation is executed when the Enzo runtime parameter
ParallelParticleIO is set to 1. Running ring generates files called
PPos.nnnn PVel.nnnn where nnnn goes from 0001 to the total number
of processors that are used for the simulation. These files contain
the particle position and velocity information for particles that
belong to each processor individually, and will be read into the
code instead of the monolithic particle position and velocity
files. Note that if ParallelParticleIO is on and ring is NOT run,
the simulation will crash.

usage: ring [string] <particle position file> <particle velocity file>

[string] can be one of the following: pv, pvm, pvt, or pvmt. p, v,
m and t correspond to position, velocity, mass, and type,
respectively. The most common [string] choice is ‘pv’.
In that case, and if you use the default names for
the particle position and velocity files, your usage will look
like:

ring pv ParticlePositions ParticleVelocities

enzohop

The second (and generally favored) method used for finding density peaks in an
Enzo simulation. More information can be found here. A file called
HopAnalysis.out is output which contains halo position and mass
information.

enzohop [-b #] [-f #] [-t #] [-g] [-d] amr_file
 -b)egin region
 -f)inish region
 -t)hreshold for hop (default 160)
 -g)as particles also used (normally just dm)
 -d)ebug

anyl

anyl is the analysis package written in C, previously known as enzo_anyl.
Although the analysis toolkit for enzo that’s being constantly updated is YT,
anyl has its own value for some users. It creates radial, disk, vertical
profiles for baryon (each species), dark matter, and star particles. Works with
all AMR formats including HDF4 and packed HDF5.

usage: anyl.exe <amr file> <anyl parameter file>

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Running Enzo

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	User Guide

Running Enzo

Once the code is compiled and a parameter file is prepared,
starting the simulation is easy:

mpirun -np 1 enzo [-d] parameter_file

The syntax of the mpirun varies between mpi implementations. The
example given here comes from a machine using a standard MPI
implementation that is initiated by the ‘mpirun’ command, and implies
the use of a single processors (the argument after the -np flag
indicates the number of processors).

The -d flag triggers a debug option that produces a substantial amount
of output. See Getting Started with Enzo for more detailed information on
running simulations. You may also need to use ring if you are
using parallel I/O.

Restarting

During a run, there are a number of forms of output. The largest
will probably be the output of the full dataset as specified by
parameters such as dtDataDump and the CosmologyOutputRedshift.
Such outputs contain a number of different files (sometimes many files
if there are a large number of grids) and are explained elsewhere.
It is useful to have a fairly large number of such outputs if the
run is a long one, both to provide more information to analyze, but
also in case of an unintended interruption (crash). Fortunately,
any full output can be used to restart the simulation:

mpirun -np 1 enzo [-d] -r output_name

Monitoring information

As the simulation runs, at every top grid timestep, it outputs a
line of information to the ascii file OutputLevelInformation (which
is overwritten on restart). The amount of information on this line
can be quite extensive, but here the format is briefly summarized.
The first number is the problem time, while the next 6 relate to
general information about the entire run. Within these six numbers,
the first is the maximum level currently in use, the second is the
number of grids, the third is a number proportional to the memory
used, the fourth is the mean axis ratio of all grids, and the last
two are reserved for future use. Then, there are three spaces,
and another group of numbers, all providing information about the
first (top grid) level. This pattern of three spaces and six
numbers is repeated for every level. An example of this file is
provided below.

Cycle 151 Time 20.241365 MaxDepth 4 Grids 412 Memory(MB) 53.3117 Ratio 2.22582
 Level 0 Grids 2 Memory(MB) 13.8452 Coverage 1 Ratio 2 Flagged 0 Active 262144
 Level 1 Grids 304 Memory(MB) 31.4977 Coverage 0.166855 Ratio 2.43768 Flagged 0 Active 349920
 Level 2 Grids 76 Memory(MB) 5.81878 Coverage 0.00329208 Ratio 1.66118 Flagged 0 Active 55232
 Level 3 Grids 22 Memory(MB) 1.74578 Coverage 0.000125825 Ratio 1.63561 Flagged 0 Active 16888
 Level 4 Grids 8 Memory(MB) 0.404286 Coverage 2.5034e-06 Ratio 1.21875 Flagged 0 Active 2688

The information for each level is:

	number of grids on the level

	memory usage (minus overhead). Actual memory usage is usually a factor of 10 higher.

	the volume fraction of the entire region covered by grids on this level,

	the mean axis ratio of grids on this level

	the fraction of cells on this level which need refinement (unused)

	the number of active cells on this level.

Debugging information

It is often useful to run with the debug flag turned on,
particularly if the code is crashing for unknown reasons.
However, the amount of output is quite
large so it is useful to redirect this to a log file, such as:

mpirun -np 1 enzo -d -r output_name >& log_file

Some modules (the cooling unit is particularly bad for this),
produce their own debugging logs in the form of fort.?? files.
These can be ignored unless problems occur.

Test Problems

There are a number of built-in tests, which can be used to debug the
system or characterize how well it solves a particular problem. (see
Enzo Test Suite for a complete list.) Note that Enzo can run any
problem after compilation, since no compilation flags affect
simulation parameters. To run a particular test, cd to the
[browser:public/trunk/doc/examples doc/examples] subdirectory of the
Enzo source distribution (after compiling enzo) and use the following
command-line:

mpirun -np 1 enzo [-d] test_name

The syntax of the mpirun various from mpi implementation. The
example given here comes from the Origin2000 and implies a single
processor (the argument after the -np flag indicates the number of
processors).

The parameter test_name corresponds to the parameter file that
specifies the type of test and the test particulars. This file is
ascii, and can be edited.
It consists of a series of lines (and optional comments) each of
which specifies the value of one parameter. The parameters are
discussed in more detail in Enzo Parameter List.

If you just type enzo without any arguments, or if the number of
arguments is incorrect, the program should respond with a summary
of the command-line usage.

The -d flag turns on a rather verbose debug option.

For example, to run the shock tube test, use:

mpirun -np 1 enzo ShockTube

or

enzo ShockTube

The response should be:

Successfully read in parameter file ShockTube.
Successful completion...

How do you know if the results are correct? New for v2.0, we have
added more regression tests and answer tests [http://ppcluster.ucsd.edu/lcatest/], using LCAtest. We hope to
add more answer tests, especially for large production-type
simulations, e.g. a 5123 cosmology simulation.

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Enzo Test Suite

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	User Guide

Enzo Test Suite

The Enzo test suite is a set of tools whose purpose is to perform
regression tests on the Enzo codebase, in order to help developers
discover bugs that they have introducted, to verify that the code is
producing correct results on new computer systems and/or compilers,
and, more generally, to demonstrate that Enzo is behaving as expected
under a wide variety of conditions.

What’s in the test suite?

The suite is composed of a large number of individual test problems
that are designed to span the range of physics and dimensionalities
that are accessible using the Enzo test code, both separately and in
various permutations. Tests can be selected based on a variety of
criteria, including (but not limited to) the physics included, the
estimated runtime of the test, and the dimensionality. For
convenience, three pre-created, overlapping sets of tests are
provided:

1. The “quick suite” (--quicksuite=True). This set of tests should
run in a few minutes on a single core of a laptop. It is composed of
one-dimensional calculations that test critical physics packages both
alone and in combination. The intent of this package is to be run
relatively frequently (multiple times a day) to ensure that bugs have
not been introduced during the code development process.

2. The “push suite” (--pushsuite=True). This set of tests should run
in roughly an hour or two on a single core of a laptop or desktop
machine. It is composed of one-, two- and three-dimensional
calculations that test a wider variety of physics modules, both alone
and in combination, than the “quick suite” described above. The
intent of this package is to provide a thorough validation of the code
prior to changes being pushed to the Google Code mercurial repository.

3. The “full suite” (--fullsuite=True). This set of tests should run in
no more than 24 hours on 8-16 cores of a Linux cluster, and includes a
variety of 3D, multiphysics tests that are not in the “quick” and
“push” suites. This suite provides the most rigorous possible
validation of the code in many different situations, and is intended
to be run prior to major changes being pushed to the Google Code
repository and prior to public releases of the code.

How to run the test suite

The Enzo test suite is run within the run/ subdirectory of the
Enzo source distribution, using the test_runner.py file. To
run the test suite, follow these instructions:

1. Before running the test suite, you should download the “gold
standard” datasets from http://enzo-project.org/tests/gold_standard.tar.gz, and untar that file into a
convenient directory.

2. Compile Enzo. The gold standard calculations use opt-debug and
64-bit precision everywhere (make opt-debug, make
precision-64, make particles-64, and make
integers-64). If you use significantly different compilation options
(higher-level optimization in particular) you may see somewhat
different outputs that will result in failed tests.

3. Go into the run/ subdirectory in the Enzo repository and
type the following command:

./test_runner.py --quicksuite=True --compare-dir=/path/to/gold_standard \\
 --output-dir=/enzo/test/directory

In this comand, --quicksuite=True instructs the test runner to
use the quick suite (other possible keyboards here are
‘–pushsuite=True’ and ‘–fullsuite=True’).
--output-dir=/enzo/test/directory instructs the test runner to
write output to the user-specified directory, and
--compare-dir=/path/to/gold_standard instructs the test runner
to use the set of data files in the listed directory as a gold
standard for comparison. It is also possible to choose sets of tests
that are sorted by dimensionality, physics modules, runtime, number of
processors required, and other criteria. Type ./test_runner.py
--help for a more complete listing.

How to add a new test to the library

It is hoped that any newly-created or revised physics module will be
accompanied by one or more test problems, which will ensure the
continued correctness of the code. This sub-section explains the
structure of the test problem system as well as how to add a new test
problem to the library.

Test problems are contained within the run/ directory in the
Enzo repository. This subdirectory contains a tree of directories
where test problems are arranged by the primary physics used in that
problem (e.g., Cooling, Hydro, MHD). These directories may be further
broken down into sub-directories (Hydro is broken into Hydro-1D,
Hydro-2D, and Hydro-3D), and finally into individual directories
containing single problems. A given directory contains, at minimum,
the Enzo parameter file (having extension .enzo, described in
detail elsewhere in the manual) and the Enzo test suite parameter file
(with extension .enzotest). The latter contains a set of
parameters that specify the properties of the test. Consider the test
suite parameter file for InteractingBlastWaves, which can be found in the
run/Hydro/Hydro-1D/InteractingBlastWavest directory:

name = 'InteractingBlastWaves'
answer_testing_script = None
nprocs = 1
runtime = 'short'
critical = True
cadence = 'nightly'
hydro = True
gravity = False
dimensionality = 1
max_time_minutes = 1

This allows the user to specify the dimensionality, physics used, the
runtime (both in terms of ‘short’, ‘medium’, and ‘long’ calculations,
and also in terms of an actual wall clock time), and whether the test
problem is critical (i.e., tests a fundamental piece of the code) or
not. A full listing of options can be found in the run/README
file.

Once you have created a new problem type in Enzo and thoroughly
documented the parameters in the Enzo parameter list, you should
follow these steps to add it as a test problem:

1. Create a new subdirectory in the appropriate place in the
run/ directory. If your test problem uses multiple pieces of
physics, put it under the most relevant one.

2. Add an Enzo parameter file, ending in the extension .enzo,
for your test problem to that subdirectory.

3. Add an Enzo test suite parameter file, ending in the extension
.enzotest. In that file, add any relevant parameters (as
described in the run/README file).

4. Create a “gold standard” set of data for your test problem, by
running with opt-debug and 64-bit precision for floats and
integers. Contact Britton Smith (brittonsmith@gmail.com) and arrange
to send him this data. Please try to minimize the quantity of data
generated by your calculation by only writing out data at the end of
the calculation, not during the interim (unless evolution of a
quantity or quantities is important).

If you want to examine the output of your test problem for something
specific, you can optionally add a script that is indicated by the
answer_testing_script parameter. Look in the directory
run/Hydro/Hydro-3D/RotatingCylinder for an example of how this
is done.

Congratulations, you’ve created a new test problem!

What to do if you fix a bug in Enzo

It’s inevitable that bugs will be found in Enzo, and that some of
those bugs will affect the actual simulation results (and thus the
test problems used in the problem suite). If you fix a bug that
results in a change to some or all of the test problems, the gold
standard solutions will need to be updated. Here is the procedure for
doing so:

1. Run the “push suite” of test problems (--pushsuite=True)
for your newly-revised version of Enzo, and determine which test
problems now fail.

2. Visually inspect the failed solutions, to ensure that your new
version is actually producing the correct results!

3. Email the enzo-developers mailing list at
enzo-dev@googlegroups.com to explain your bug fix, and to show the
results of the now-failing test problems.

4. Once the denizens of the mailing list concur that you have
correctly solved the bug, create a new set of gold standard test
problem datasets, following the instructions in the next section.

5. After these datasets are created, send the new gold standard
datasets to Britton Smith (brittonsmith@gmail.com), who will update
the gold standard dataset tarball (http://enzo-project.org/tests/gold_standard.tar.gz).

	Push your Enzo changes to the repository.

How to create a new set of reference calculations

It may be necessary for you to generate a set of reference
calculations for some reason. If so, here is how you do this.

1. First, build Enzo using the recommended set of compile options,
which includes the debug optimization level (make opt-debug),
and 64-bit precision everywhere (make precision-64,
make particles-64, and make integers-64). You will
now have an enzo binary in the src/enzo directory.

2. Go into the run/ directory and call test_runner.py without the --compare-dir directory. If you
are have multiple Enzo repositories, you can specify the one you want:

./test_runner.py --repo=/path/to/desired/enzo/repo \\
 --output-dir=/path/to/new/reference/directory

Note that you should only use the top-level directory in the
repository, not src/enzo, and if you simply want to use the current
repository (that is, the one your run directory is located in) you can
leave out the --repo option. Once this step is completed, you should
have a full set of test problems.

3. If you then want to compare against this set of test problems, use
the following command:

./test_runner.py --repo=/path/to/desired/enzo/repo \\
 --compare-dir=/path/to/new/reference/directory \\
 --output-dir=/path/to/output/directory

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Creating Cosmological Initial Conditions

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	User Guide

Creating Cosmological Initial Conditions

There are two mechanisms for creating cosmological initial conditions with
Enzo. The original mechanism, inits, has long been distributed with Enzo.
It is exclusively serial. We also now distribute mpgrafic with
modifications to support Enzo data formats.

Using inits

The inits program uses one or more ASCII input files to set
parameters, including the details of the power spectrum, the grid
size, and output file names. Each line of the parameter file is
interpreted independently and can contain only a single parameter.
Parameters are specified in the form:

ParameterName = VALUE

Spaces are ignored, and a parameter statement must be contained on
a single line. Lines which begin with the pound symbol (#) are
assumed to be comments and ignored.

First, set the parameters in the file. There are a large number of
parameters, but many don’t need to be set since reasonable default
values are provided. Modifying a provided example (see
Sample inits and Enzo parameter files) is probably the easiest route, but for
reference there is a list of the parameters, their meanings, and their
default values.

Generating a single grid initialization (for simple Enzo runs) is
relatively straightforward. Generating a multi-grid initialization for
Enzo is somewhat more complicated, and we only sketch the full
procedure here.

Single Grid Initialization

To run a single grid initialization, you must set at least the
following parameters: Rank, GridDims, ParticleDims, as well as the
appropriate Cosmology and Power Spectrum parameters. A sample
parameter file is available, which sets up a small, single grid
cosmology simulation (that is, single grid for the initial
conditions, once Enzo is used, additional grids will be created).

After creating or modifying a parameter file, and compiling inits,
run the code with:

inits [-d] parameter_file

Where parameter_file is the name of your modified parameter file
(the -d turns on a debug option). This will produce a number of HDF
files containing the initial grids and particles, which are in the
correct units for use in Enzo.

Multiple-grid Initialization

New in version 2.1.

The multi-grid (or nested) initialization can be used to refine in a
specific region, such as the Lagrangian sphere of a halo. We assume
that you have first run a single-grid simulation and identified a
region out of which a halo will form and can put this in the form of
the left and right corners of a box which describes the region. Then
you add the following parameters to the single-grid initialization
code:

MaximumInitialRefinementLevel = 2
RefineRegionLeftEdge = 0.15523 0.14551 0.30074
RefineRegionRightEdge = 0.38523 0.37551 0.53074
NewCenterFloat = 0.270230055 0.260508984 0.415739357

MaximumInitialRefinementLevel indicates how many extra levels you want
to generate (in this case two additional levels, or 3 in total,
including the root grid). The next two parameters
(RefineRegionLeftEdge and RefineRegionRightEdge) describe the region
to be refined. The fourth (optional) parameter re-centers the grid on
the halo to be resimulated.

Once you have added these parameters, run inits once on the new
parameter file. It will give you a progress report as it runs (note
that if MaximumInitialRefinementLevel is large, this can take a long
time), and generate all of the necessary files (e.g. GridDensity.0,
GridDensity.1, etc.).

It will also generate a file called EnzoMultigridParameters which you
can then copy directly into the enzo parameter file, and it specifies
the positions of the new grids. You will still need to set a few
other parameters in the enzo parameter file, including
RefineRegionLeftEdge and RefineRegionRightEdge so that it only refines
in the specified region (typically this should match the most refined
initial grid). Also set the MaximumRefinementLevel parameter and the
parameter controlling the density to be refined
(MinimumOverDensityForRefinement – this also applies to the root
grid, so it needs to be divided by 8^l where l is the value of
MaximumInitialRefinementLevel).

Note that it is also possible to generate each level of initial
conditions manually. This should not really be necessary, but a rough
guideline is given here. To do this, prepare multiple parameter file
describing the individual parameter regions, and then top grid can be
generated with:

inits [-d] -s SubGridParameterFile TopGridParameterFile

The -s flag provides the name of the sub-grid parameter file, which
is required by inits so that the particles are not replicated in
the sub-grid region. The sub-grids are made with the usual command
line:

inits [-d] SubGridParameterFile

!Subgrids with MaxDims of 512 or larger will take some time and
require a fair amount of memory since the entire region is
generated and then the desired section extracted.

Inits Parameter List

Cosmology Parameters

	CosmologyOmegaMatterNow

	This is the contribution of all non-relativistic matter (including
HDM) to the energy density at the current epoch (z=0), relative to
the value required to marginally close the universe. It includes
dark and baryonic matter. Default: 1.0

	CosmologyOmegaLambdaNow

	This is the contribution of the cosmological constant to the energy
density at the current epoch, in the same units as above. Default:
0.0

	CosmologyOmegaWDMNow

	This is the contribution due to warm dark matter alone. Ignored
unless PowerSpectrumType = 13 or 14. Default: 0.0

	CosmologyOmegaHDMNow

	This is the contribution due to hot dark matter alone. Default: 0.0

	CosmologyOmegaBaryonNow

	The baryonic contribution alone. Default: 0.06

	CosmologyComovingBoxSize

	The size of the volume to be simulated in Mpc/h (at z=0). Default:
64.0

	CosmologyHubbleConstantNow

	The Hubble constant at z=0, in units of 100 km/s/Mpc. Default: 0.5

	CosmologyInitialRedshift

	The redshift for which the initial conditions are to be generated.
Default: 20.0

Power Spectrum Parameters

	PowerSpectrumType

	This integer parameter indicates the routine to be used for
generating the power spectrum. Default: 1 The following are
currently available:

	1 - CDM approximation from BBKS (Bardeen et al 1986) as modified
by Peacock and Dodds (1994), to include, very roughly, the effect
of baryons. This should not be used for high baryon universes or
for simulations in which precision in the PS is important.

	2 - CHDM approximate PS from Ma (1996). Roughly good for hot
fractions from 0.05 to 0.3.

	3 - Power-law (scale-free) spectra.

	4 - Reads in a power-spectrum from a file (not working).

	5 - CHDM approximate PS from Ma (1996), modified for 2 equal
mass neutrinos.

	6 - A CDM-like Power spectrum with a shape parameter (Gamma),
that is specified by the parameter PowerSpectrumGamma.

	11 - The Eisenstein and Hu fitting functions for low and
moderate baryon fraction, including the case of one massive
neutrino.

	12 - The Eisenstein and Hu fitting functions for low and
moderate baryon fraction, for the case of two massive neutrinos.

	13 - A Warm Dark Matter (WDM) power spectrum based on the
formulae of Bode et al. (2001 ApJ 556, 93). The WDM equivalent of
the Eisenstein & Hu fitting function with one massive neutrino (so
a WDM version of #11).

	14 - A Warm Dark Matter (WDM) power spectrum based on the
formulae of Bode et al. (2001 ApJ 556, 93). The WDM equivalent of
the CDM BBKS approximation of Bardeen et al 1986 (the WDM version
of #1).

	20 - A transfer function from CMBFast is input for this option,
based on the filenames described below.

	PowerSpectrumSigma8

	The amplitude of the linear power spectrum at z=0 as specified by
the rms amplitude of mass-fluctuations in a top-hat sphere of
radius 8 Mpc/h. Default: 0.6

	PowerSpectrumPrimordialIndex

	This is the index of the mass power spectrum before modification by
the transfer function. A value of 1 corresponds to the scale-free
primordial spectrum. Default: 1.0.

	PowerSpectrumRandomSeed

	This is the initial seed for all random number generation, which
should be negative. The random number generator (Numerical Recipes
RAN3) is machine-independent, so the same seed will produce the
same results (with other parameters unchanged). Note also that
because the spectrum is sampled strictly in order of increasing
k-amplitude, the large-scale power will be the same even if you
increase or decrease the grid size. Default: -123456789

	PowerSpectrumkcutoff

	The spectrum is set to zero above this wavenumber (i.e. smaller
scales are set to zero), which is in units of 1/Mpc. It only works
for power spectrum types 1-6. A value of 0 means no cutoff.
Default: 0.0

	PowerSpectrumkmin/kmax

	These two parameters control the range of the internal lookup table
in wavenumber (units 1/Mpc). Reasonably sized grids will not
require changes in these parameters. Defaults: kmin = 1e-3, kmax =
1e+4.

	PowerSpectrumNumberOfkPoints

	This sets the number of points in the PS look-up table that is
generated for efficiency purposes. It should not require changing.
Default: 10000.

	PowerSpectrumFileNameRedshiftZero

	For input power spectra, such as those from CMBFAST, two transfer
functions are required: one at z=0 to fix the amplitude (via
Sigma8) and the other at the initial redshift to give the shape and
amplitude relative to z=0. No default.

	PowerSpectrumFileNameInitialRedshift

	see above.

	PowerSpectrumGamma

	The shape parameter (Omega*h); ignored unless PowerSpectrumType =
6.

	PowerSpectrumWDMParticleMass

	The mass of the dark matter particle in KeV for the Bode et al.
warm dark matter (WDM) case. Ignored unless PowerSpectrumType = 13
or 14. Default: 1.0.

	PowerSpectrumWDMDegreesOfFreedom

	The number of degrees of freedom of the warm dark matter particles
for the Bode et al. warm dark matter model. Ignored unless
PowerSpectrumType = 13 or 14. Default: 1.5.

	PowerSpectrumGamma

	The shape parameter (Omega*h); ignored unless PowerSpectrumType =
6.

Grid Parameters: Basic

	Rank

	Dimensionality of the problem, 1 to 3 (warning: not recently tested
for Rank !=2). Default: 3

	GridDims

	This sets the actual dimensions of the baryon grid that is to be
created (and so it may be smaller than MaxDims in some cases).
Example: 64 64 64 No default.

	ParticleDims

	Dimensions of the particle grid that is to be created. No default.

	InitializeGrids

	Flag indicating if the baryon grids should be produced (set to 0 if
inits is being run to generate particles only). Default: 1

	InitializeParticles

	Flag indicating if the particles should be produced (set to 0 if
inits is being run to generate baryons only). Default: 1

	ParticlePositionName

	This is the name of the particle position output file. This HDF
file contains one to three Scientific Data Sets (SDS), one for
dimensional component. Default: ParticlePositions

	ParticleVelocityName

	The particle velocity file name, which must(!) be different from
the one above, otherwise the order of the SDS’s will be incorrect.
Default: ParticleVelocities

	ParticleMassName

	This is the name of the particle mass file, which is generally not
needed (enzo generates its own masses if not provided). Default:
None

	GridDensityName

	The name of the HDF file which contains the grid density SDS. Default:
GridDensity

	GridVelocityName

	The name of the HDF file which contains the SDS’s for the baryonic
velocity (may be the same as GridDensityName). Default:
GridVelocity

Grid Parameters: Advanced

	MaximumInitialRefinementLevel

	Used for multi-grid (nested) initial code generation. This
parameter speciesi the level (0-based) that the initial conditions
should be generated to. So, for example, setting it to 1
generates the top grid and one additional level of refinement.
Note that the additional levels are nested, keeping at least one
coarse cell between the edge of a coarse grid and its refined grid.
Default: 0

	RefineRegionLeftEdge, RefineRegionRightEdge

	Species the left and right corners of the region that should be
refined using the AutomaticSubgridGeneration method (see above
parameter). Default: 0 0 0 - 1 1 1

	NewCenterFloat

	Indicates that the final grid should be recenter so that this point
is the new center (0.5 0.5 0.5) of the grid.

	MaxDims

	All dimensions are specified as one to three numbers deliminated by
spaces (and for those familiar with the KRONOS or ZEUS method of
specifying dimensions, the ones here do not include ghost zones).
An example is: 64 64 64. MaxDims are the dimensions of the
conceptual high-resolution grid that covers the entire
computational domain. For a single-grid initialization this is just
the dimension of the grid (or of the particle grid if there are
more particles than grid points). For multi-grid initializations,
this is the dimensions of the grid that would cover the region at
the highest resolution that will be used. It must be identical
across all parameter files (for multi-grid initializations). The
default is the maximum of GridDims or ParticleDims, whichever is
larger (in other words unless you are using a multi-grid
initialization, this parameter does not need to be set). Confused
yet?

	GridRefinement

	This integer is the sampling, for the baryon grid, in each
dimension, relative to MaxDims. For single-grid initializations,
this is generally 1. For multi-grids, it is the refinement factor
relative to the finest level. In other words, if the grid covered
the entire computational region, then each value in MaxDims would
equal GridDims times the GridRefinement factor. Default: 1

	ParticleRefinement

	Similar function as above, but for the particles. Note that it can
also be used to generate fewer particles than grids (i.e. the
GridRefinement and ParticleRefinement factors do not have to be the
same). Default: 1

	StartIndex

	For single-grid initializations, this should be the zero vector.
For multi-grid initializations it specifies the index (a triplet of
integers in 3D) of the left-hand corner of the grid to be
generated. It is specified in terms of the finest conceptual grid
and so ranges from 0 to MaxDims-1. Note also that for AMR, the
start and end of a sub-grid must lie on the cell-boundary of it’s
parent. That means that this number must be divisible by the
Refinement factor. The end of the sub-grid will be at index:
StartIndex + GridRefinement*GridDims. The co-ordinate system used
by this parameter is always the unshifted one (i.e. it does not
change if NewCenter is set).

Using mpgrafic

New in version 2.0.

This version of mpgrafic is a modified version of the public version of
mpgrafic, found at

http://www2.iap.fr/users/pichon/mpgrafic.html

to produce files readable by Enzo. It has been modified to write HDF5 files in
parallel.

Dependencies

	HDF5 with parallel and FORTRAN support (flags –enable-parallel
–enable-fortran)

	FFTW v2 with MPI support and different single and double
precision versions. It must be compiled once for single precision
and another time for double precision. For the former, use the
flags –enable-mpi –enable-type-prefix –enable-float. For double
precision, use –enable-mpi –enable-type-prefix.

Approach

Non-nested initial conditions are created only using mpgrafic. However if the
user wants nested initial conditions, a full-resolution grid (e.g. 2563 grid for a 643 top grid with 2 nested grids) must be
created first and then post-processed with degraf to create a degraded
top-level grid and cropped (and degraded if not the finest level)
grids for the nested grids.

As with the original inits Enzo package, the baryon density and velocities are
written in a 3 dimensional array. The original inits writes the particle data
in 1-d arrays. In mpgrafic, only the particle velocities are written in a 3-d
array. Enzo has been modified to create the particle positions from the
Zel’dovich approximation from these velocities, so it is not needed to write
the positions anymore. Also it does not create particles that are represented
by a finer grid at the same position.

One big benefit of writing the particle velocities in a 3-d array is avoiding
the use of the RingIO tool because each processor knows which subvolume to read
within the velocity data.

As of HDF5 version 1.8.2, there exists a bug that creates corrupted datasets
when writing very large (e.g. >20483) datasets with multiple
components (4-d arrays). The HDF5 I/O in mpgrafic works around this bug by
creating one file per velocity component for both the baryons and particles.

How to run

First the user needs to compile both mpgrafic and degraf. The
configure / make systems are set up similarly.

Configure flags:

	
--enable-enzo
	turns on I/O for Enzo

	
--enable-double

		creates files in double precision

	
--enable-onedim

		creates one file per velocity component

	
--with-hdf=HDF5_DIR

		sets directory for parallel HDF5

If FFTW is not present in the user’s library path, the following
variables must be also set

CFLAGS="-I ${FFTW_DIR}/include"
FCFLAGS="-I ${FFTW_DIR}/include"
LDFLAGS="-L ${FFTW_DIR}/lib"

To run in parallel, you can use FC=mpif90 and LD=h5pfc, which the
compiler wrapper for parallel HDF5.

Example configure (for Mac OSX):

./configure LD="-bind_at_load" FC=mpif90 CC=mpicc --enable-enzo \
--enable-double --enable-onedim --with-hdf=/usr/local/hdf5/1.8.2p

Example configure scripts can be found in mpgrafic/mpgrafic-0.2/conf.*. After
a successful configure, you can make mpgrafic or degraf by typing ‘make’.

After the programs are compiled, you make the initial conditions by using a
python script, make_ic.py, in the top directory that simplifies the user input
into mpgrafic and degraf and the moving of files.

make_ic.py parameters

	nprocs

	number of processors

	boxsize

	box size in comoving Mpc (not Mpc/h)

	resolution

	top-level grid resolution

	n_levels

	level of the finest nested grid

	inner_width

	width of the finest nested grid

	buffer_cells

	number of cells separating nested grids

	seed

	random seed (must be 9 digits)

	name

	name of the data directory (saved in mpgrafic/data/name/)

	center

	how much to shift the data in order to center on a particular
region.

	LargeScaleCorrection

	whether to use a noise file from a lower-resolution run

	LargeScaleFile

	noise file from that lower-resolution run

	OneDimPerFile

	whether we’re using one file per velocity component

	omega_m

	Omega matter

	omega_v

	Omega lambda

	omega_b

	Omega baryon

	h0

	Hubble constant in units of [km/s/Mpc]

	sigma8

	sigma_8

	n_plawslope

	slope of power spectrum

After you set your parameters, run this script with

python make_ic.py

and it will re-compile mpgrafic and (for nested grids) degraf. Then it will run
mpgrafic for the full-resolution box. If the user wants nested grids, it will
copy the data files to mpgrafic/degraf and create the set of nested grid files.

The user cannot specify the initial redshift because mpgrafic determines it
from the parameter sigstart that is the maximum initial density fluctuation.
From this, mpgrafic calculates the initial redshift. This file is overwritten
by the python script, so if you want to change this parameter, change it in the
python script (routine write_grafic1inc).

The noise file is always kept in mpgrafic/mpgrafic-0.2/src and is named
$seed_$resolution.dat, where $resolution is the top-level grid resolution. It
can be re-used with LargeScaleFile if the user wants to re-simulate the volume
at a higher resolution.

The data files are moved to mpgrafic/data/$name. If nested grids were created,
degraf writes a set of parameters in enzo.params for copy-pasting into an Enzo
parameter file. Now you can move the files to the simulation directory and
start your Enzo cosmology simulation!

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Running Large Simulations

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	User Guide

Running Large Simulations

Here we describe how to efficiently run a large simulation on a high
number of processors, such as particular parameters to set and
suggested number of MPI tasks for a given problem size. For a problem
to be scalable, most of the code must be parallel to achieve high
performance numbers on large MPI process counts (see Amdahl’s
Law [http://en.wikipedia.org/wiki/Amdahl’s_law]). In general, the user wants to pick the number of processors
so that computation is still dominant over communication time. If the
processor count is too high, communication time will become too large
and might even slow down the simulation!

For picking the number of processors for an Enzo run, a good starting
point is putting a 643 box on each processor for both AMR and
unigrid setups. For example, a 2563 simulation would run
well on (256/64)3 = 64 processors. For nested grid
simulations, the outer boxes usually require little computation
compared to the “zoom-in” region, so the processor count should be
based on the inner-most nested grid size. The user can experiment
with increasing the processor count from this suggestion, but strong
scaling (i.e. linear speedup with processor count) is not to be
expected. Little performance gains (as of v2.0) can be expected
beyond assigning a 323 cube per processor.

Note

The level-0 grid is only partitioned during the problem
initialization. It will never be re-partitioned if the user
restarts with a different number of processors. However, some
performance gains can be expected even if a processor does not
contain a level-0 grid because of the work on finer levels.

Important Parameters

	LoadBalancing: Default is 1, which moves work from overloaded to
underutilized processes, regardless of the grid position. New for
v2.1: In some cases but not always, speedups can be found in load
balancing on a space filling curve [http://en.wikipedia.org/wiki/Hilbert_curve] (LoadBalancing = 4). Here
the grids on each processor will be continuous on the space filling
curve. This results in a grouped set of grids, requiring less
communication from other processors (and even other compute nodes).

	SubgridSizeAutoAdjust and OptimalSubgridsPerProcessor: New for
v2.1 Default is ON and 16, respectively. The maximum subgrid size
and edge length will be dynamically adjusted on each AMR level
according to the number of cells on the level and number of
processors. The basic idea behind increasing the subgrid sizes
(i.e. coalescing grids) is to reduce communication between grids.

	MinimumSubgridEdge and MaximumSubgridSize: Unused if
SubgridAutoAdjust is ON. Increase both of these parameters to
increase the average subgrid size, which might reduce communication
and speedup the simulation.

	UnigridTranspose: Default is 0, which is employs blocking MPI
communication to transpose the root grid before and after the FFT.
In level-0 grids ≥ 10243, this becomes the most
expense part of the calculation. In these types of large runs,
Option 2 is recommended, which uses non-blocking MPI calls; however
it has some additional memory overhead, which is the reason it is
not used by default.

Compile-time options

	max-subgrids: If the number of subgrids in a single AMR level
exceeds this value, then the simulation will crash. Increase as
necessary. Default: 100,000

	ooc-boundary-yes: Stores the boundary conditions out of core,
i.e. on disk. Otherwise, each processor contains a complete copy of
the external boundary conditions. This becomes useful in runs with
large level-0 grids. For instance in a 10243 simulation
with 16 baryon fields, each processor will contain a set of
boundary conditions on 6 faces of 10242 with 16 baryon
fields. In single precision, this requires 402MB! Default: OFF

	fastsib-yes: Uses a chaining mesh to help locate sibling grids
when constructing the boundary conditions. Default: ON

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Enzo Output Formats

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	User Guide

Enzo Output Formats

Although there are a number of ways of specifying when (and how
often) Enzo outputs information, there is only one type of output
‘dump’ (well, not quite – there are now movie dumps, see below),
which can also be used to restart the simulation. The output format
uses the following files, each of which begins with the output
name, here we use the example base_name, and are then followed by
the output number, ranging from 0000 to 9999 (if more than 10000
grids are generated then the number goes to 10000, etc.). When
restarting, or other times when an output filename needs to be
specified, use the name without any extension (e.g. enzo -r
base_name0000).

Summary of Files

	base_name0000

	This ascii file contains a complete listing of all the parameter
settings, both those specified in the initial parameter file, as
well as all those for which default values were assumed. The
parameters (see Enzo Parameter List) are in the same format
as that used in the input file: parameter_name = value. This file
is modifiable if you would like to restart from a certain point
with different parameter values.

	base_name0000.hierarchy

	This ascii file specifies the hierarchy structure as well as the
names of the grid files, their sizes, and what they contain. It
should not be modified.

	base_name0000.cpu00001

	The field information for each cpu (padded with zeros) is contained
in separate files with a root ‘Node’ for each grid, padded with
zeros to be eight digits. The format is the Hierarchy Data Format
(HDF) version 5, a self-describing machine-independent data format
developed and supported by the National Center for Supercomputing
Applications (NCSA). More information can be found on their
home page [http://www.hdfgroup.org/]. Most scientific
visualization packages support this format. Each field is stored as
it’s own one-, two- or three-dimensional Scientific Data Set (SDS),
and is named for identification. Particles (if any) are included
with a set of one-dimensional datasets under the top ‘grid’ node.

	base_name0000.boundary

	An ascii file which specifies boundary information. It is not
generally useful to modify.

	base_name0000.boundary.hdf

	Contains field-specific boundary information, in HDF format.

	base_name0000.radiation

	This ascii file is only generated if using the self-consistent
radiation field.

Output Units

The units of the physical quantities in the grid SDS’s are depend
on the problem being run. For most test problems there is no
physical length or time specified, so they can be be simply scaled.
For cosmology there are a set of units designed to make most
quantities of order unity (so single precision variables can be
used). These units are defined below (rho0 =
3*OmegaMatterNow*(100*HubbleConstantNow
km/s/Mpc)2/(8*Pi*G)).

	length: ComovingBoxSize/HubbleConstantNow * Mpc / (1+z)

	density: rho0 * (1+z)3

	time: 1/sqrt(4*Pi*G*rho0*(1+InitialRedshift)3)

	temperature: K

	velocity: (length/time)*(1+z)/(1+InitialRedshift) (this is z
independent)

The conversion factor is also given in the ascii output file
(base_name0000): search for DataCGSConversionFactor. Each field
has its own conversation factor, which converts that field to cgs
units. Users can also set completely arbitrary internal units, as
long as they are self-consistent: to see how to do this, go to
Enzo Internal Unit System.

Streaming Data Format

Purpose: To provide data on every N-th timestep of each AMR
level.

Method

We keep track of the elapsed timesteps on every AMR level. Every N-th
timestep on a particular level L, all grids on levels >= L are written
for the baryon fields (specified by the user in MovieDataField)
and particles. The integers in MovieDataField correspond to the
field element in BaryonField, i.e. 0 = Density, 7 = HII
density. Temperature has a special value of 1000.

See Streaming Data Format for a full description of the streaming
data format parameters.

File format

All files are written in HDF5 with one file per processor per
top-level timestep. The filename is named AmiraDataXXXX_PYYY.hdf5
where XXXX is the file counter, which should equal the cycle
number, and YYY is the processor number. Each file has a header
indicating

	whether the data are cell-centered (1) or vertex-centered (0)
[int]

	number of baryon fields written [int]

	number of particle fields written [int]

	field names with the baryon fields first, followed by the
particle fields [array of variable-length strings]

The group names (grid-%d) are unique only in the file. Unique grids
are identified by their timestep number attribute and position.
Each
grid has the following attributes:

	AMR level [int]

	Timestep [int]

	Code time [double]

	Redshift [double]

	Ghost zones flag for each grid face [6 x int]

	Number of ghost zones in each dimension [3 x int]

	Cell width [3 x double]

	Grid origin in code units [3 x double]

	Grid origin in units of cell widths [3 x long long]

In addition to the HDF5 files, a binary index file is created for
fast I/O in post-processing. The filenames of the these files are the
same as the main data files but with the extension .idx. The header
consists of

	pi (to indicate endianness) [float]

	cell width on the top level [float]

	number of fields [char]

	cell-centered (1) or vertex-centered (0) [char]

	field names [number of fields x (64 char)]

For every grid written, an index entry is created with

	grid ID [int]

	code time [double]

	timestep [int]

	redshift [double]

	level [char]

	grid origin in units of cell widths [long long]

	grid dimensions [short]

	number of particles [int]

Lastly, we output an ASCII file with the code times and redshifts of every top
level timestep for convenience when choosing files to read afterwards.

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Analyzing With YT

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

 	User Guide

Analyzing With YT

What is YT?

YT is a python-based tool designed for analyzing and visualizing
Adaptive Mesh Refinement data, specifically as output from Enzo. YT
is completely free and open source, with an active and expanding
development community, and it presents to the user both high-level
and low-level APIs. The
documentation [http://yt.enzotools.org/doc/] contains a
tutorial as well as an API reference, but here we will step through
some simple steps toward creating script to make simple plots of a
cosmological simulation.

This brief tutorial presupposes that you have run the installation
script and are comfortable launching python. (The install script will
tell you how!) It’s also encouraged to launch the special YT-enhanced
IPython [http://ipython.scipy.org/] shell via the command iyt,
which (thanks to IPython!) features filesystem navigation and tab
completion, along with interactive plotting capabilities.

Making Slices

Here is a sample script that will make a set of slices centered on
the maximum density location, with a width of 100 kpc.

from yt.mods import *
pf = EnzoStaticOutput("RedshiftOutput0035.dir/RedshiftOutput0035")

pc = raven.PlotCollection(pf)
pc.add_slice("Density",0)
pc.add_slice("Density",1)
pc.add_slice("Density",2)
pc.set_width(100.0,'kpc')
pc.save("z35_100kpc")

If you put this into a file called my_script.py, you can execute
it with python2.5 my_script.py and it will save out a set of
images prefixed with z35_100kpc in PNG format.

Making Simple Radial Profiles

If you want to make radial profiles, you can generate and plot them
very easily with YT. Here is a sample script to do so.

from yt.mods import *
pf = EnzoStaticOutput("RedshiftOutput0035.dir/RedshiftOutput0035")

pc = PlotCollection(pf)

pc.add_profile_sphere(100.0, 'kpc', ["Density", "Temperature"])
pc.save("z35_100kpc")

pc.switch_z("VelocityMagnitude")
pc.save("z35_100kpc")

To show the mass distribution in the Density-Temperature plane, we
would make a phase diagram.

from yt.mods import *
pf = EnzoStaticOutput("RedshiftOutput0035.dir/RedshiftOutput0035")

pc = PlotCollection(pf)

pc.add_phase_sphere(100.0, 'kpc', ["Density", "Temperature", "CellMassMsun"], weight=None)
pc.save("z35_100kpc")

More Information

For more information on yt, see the yt website [http://yt.enzotools.org],
where you will find mailing lists, documentation, API documentation, a cookbook
and even a gallery of images.

 Copyright 2011, Enzo Developers.
 Last updated on Nov 23, 2012.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 	enzo-2.1.1

 	enzo-2.1.0

 Simulation Names and Identifiers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Enzo 2.1 documentation

