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Welcome to Enzo’s documentation!

This is the development site for Enzo, an adaptive mesh refinement (AMR),
grid-based hybrid code (hydro + N-Body) which is designed to do simulations of
cosmological structure formation. Links to documentation and downloads for all
versions of Enzo from 1.0 on are available.

Enzo development is supported by grants AST-0808184 and OCI-0832662 from the
National Science Foundation.
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Enzo Mailing Lists

There are two mailing lists for Enzo hosted on Google Groups, enzo-users
and enzo-dev.


enzo-users

Everyone Enzo user should sign up for the
enzo-users mailing list.
This is is used to announce changes to Enzo, and sometimes major changes
Enzo-related analysis tools.
This list is appropriate for anything else Enzo-related,
such as machine-specific compile problems,
discussions of the science and physics behind what Enzo does,
or queries about problem initialization.
We recommend using the Enzo users mailing list liberally - by this we mean
that any question asked on the list will educate everyone else on the list,
and is manifestly not a stupid question.
As long as a good effort has been made to try to figure out the answer
before mailing the list, all questions about Enzo are welcome!
Please follow the link below to sign up for this list and a link
to discussion archives:

http://groups.google.com/group/enzo-users

To post a message to this list, send an email to:

enzo-users@googlegroups.com

The archives for the old Enzo users mailing list can be found linked below.
A search of the list archives should be performed before emailing the list
to prevent asking a question that has already been answered (using, for example,
an advanced web search [http://www.google.com/advanced_search]
limited to that page).

https://mailman.ucsd.edu/pipermail/enzo-users-l/




enzo-dev

The second mailing is for developers of Enzo. This is for Enzo “old-hats”,
or anyone interested in adding new features to Enzo, or anyone who wants a deeper
understanding of the internals of Enzo. Please follow the link below
to sign up for the list and a link to the discussion archives:

http://groups.google.com/group/enzo-dev

To post a message to this list, send an email to:

enzo-dev@googlegroups.com






Regression Tests

Enzo has an internal testing suite (Enzo Test Suite) that
performs regression tests that verifies that the code is producing
expected results on a wide variety of platforms.  It also aids in
discovering bugs that may have been introduced in the development
process of Enzo.  The Enzo codebase is tested before every point
release and routinely by Enzo developers.




Citing Enzo

Guidelines for citing enzo are available in the CITATION file in the root of
the enzo mercurial repository.

If you use Enzo for a scientific publication, we ask that you cite the code in
the following way in the acknowledgments of your paper:

Computations described in this work were performed using the
publicly-available \texttt{Enzo} code (http://enzo-project.org), which is
the product of a collaborative effort of many independent scientists from
numerous institutions around the world.  Their commitment to open science
has helped make this work possible.





In addition, we request that you link to the project webpage in a footnote and
add a citation to the Enzo method paper.  See the CITATION file for BibTeX
and LaTeX formatted citations.
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Enzo Public License

University of Illinois/NCSA Open Source License

Copyright (c)  1993-2000 by Greg Bryan and the Laboratory for Computational
Astrophysics and the Board of Trustees of the University of Illinois in
Urbana-Champaign.  All rights reserved.

Developed by:



	Laboratory for Computational Astrophysics

	National Center for Supercomputing Applications

	University of Illinois in Urbana-Champaign






Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal with
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:



	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimers.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the documentation
and/or other materials provided with the distribution.

	Neither the names of The Laboratory for Computational Astrophysics,
The National Center for Supercomputing Applications, The University of
Illinois in Urbana-Champaign, nor the names of its contributors may be used
to endorse or promote products derived from this Software without specific
prior written permission.






THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
THE SOFTWARE.

University of California/BSD License

Copyright (c) 2000-2008 by Greg Bryan and the Laboratory for Computational
Astrophysics and the Regents of the University of California.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:



	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the Laboratory for Computational Astrophysics, the
University of California, nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.






THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
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Obtaining and Building Enzo


Enzo Compilation Requirements

Enzo can be compiled on any POSIX-compatible operating system, such as Linux,
BSD (including Mac OS X), and AIX.  In addition to a C/C++ and Fortran-90
compiler, the following libraries are necessary:



	HDF5 [http://www.hdfgroup.org/HDF5/], the hierarchical data format.
Note that HDF5 also may require the szip and zlib libraries, which can be
found at the HDF5 website.  Note that compiling with HDF5 1.8 or greater
requires that the compiler directive H5_USE_16_API be specified;
typically this is done with -DH5_USE_16_API and it’s set in most of
the provided makefiles.

	MPI [http://www.mcs.anl.gov/research/projects/mpi/], for multi-processor parallel
jobs.  Note that Enzo will compile without MPI, but it’s fine to compile
with MPI and only run on a single processor.

	yt [http://yt-project.org], the yt visualization and analysis suite.
While it is not required to run enzo, yt enables the easiest analysis
of its outputs, as well as the ability to run the enzo testing tools.  It
also provides an easy way to download enzo as part of its installation script.
See the Enzo Project home page [http://enzo-project.org/] for more
information.









Downloading Enzo

We encourage anyone who uses Enzo to sign up for the Enzo Users’
List [http://groups.google.com/group/enzo-users], where one can ask questions
to the community of enzo users and developers.

Please visit the Enzo Project home page [http://enzo-project.org] to learn
more about the code and different installation methods.  To directly access the source
code, you can visit the Enzo Bitbucket page [https://bitbucket.org/enzo].

If you already have Fortran, C, C++ compilers,
Mercurial [http://mercurial.selenic.com],
MPI [http://www.mcs.anl.gov/research/projects/mpi/], and
HDF5 [http://www.hdfgroup.org/HDF5/] installed, then installation of
Enzo should be straightforward.  Simply run the following at the command line
to get the latest stable version of the Enzo source using Mercurial. This
command makes a copy of the existing enzo source code repository on your local
computer in the current directory:

~ $ hg clone https://bitbucket.org/enzo/enzo-dev ./enzo





Later on, if you want to update your code and get any additional modifications
which may have occurred since you originally cloned the source repository,
you will have to pull them from the server and then update your
local copy (in this example, no new changes have occurred):

By default, after you clone enzo you will be on the stable branch.  If you
wish to use the latest development version, you must update to the
week-of-code branch:

~/enzo $ hg update week-of-code





~/enzo $ cd enzo
~/enzo $ hg pull
pulling from https://bitbucket.org/enzo/enzo-dev
searching for changes
no changes found

~/enzo $ hg update
0 files updated, 0 files merged, 0 files removed, 0 files unresolved

~/enzo $





This covers the basics, but for more information about interacting with the
mercurial version control system please peruse the Developer’s Guide,
the Mercurial Documentation [http://mercurial.selenic.com/], and/or
this entertaining tutorial on Mercurial [http://hginit.com].




Building Enzo

This is a quick, line by line example for building
Enzo using the current build system. A comprehensive list of the make
system arguments can be found in The Enzo Makefile System.

This assumes that we’re working from a checkout (or download) of the source
after following instructions on the Enzo Project home page [http://enzo-project.org], or the instructions in the last section.  For more detailed information
about the structure of the Enzo source control repository, see
Introduction to Enzo Modification.


Initializing the Build System

This just clears any existing configurations left over from a previous machine,
and creates a couple of files for building.

~ $ cd enzo/
~/enzo $ ./configure
Configure complete.

~/enzo $





This message just confirms that the build system has been
initialized.  To further confirm that it ran, there should be a file called
Make.config.machine in the src/enzo subdirectory.




Go to the Source Directory

The source code for the various Enzo components are laid out in the
src/ directory.

~/enzo $ cd src
~/enzo/src $ ls
Makefile      P-GroupFinder      TREECOOL      anyl      enzo      enzohop
inits         lcaperf            mpgrafic      performance_tools   ring

~/enzo/src $





Right now, we’re just building the main executable (the one that
does the simulations), so we need the enzo/ directory.

~/enzo/src $ cd enzo/








Find the Right Machine File

We’ve chosen to go with configurations files based on specific
machines. This means we can provide configurations files for most
of the major NSF resources, and examples for many of the one-off
(clusters, laptops, etc.).

These machine-specific configuration files are named Make.mach.machinename.

~/enzo/src/enzo $ ls Make.mach.*
Make.mach.arizona               Make.mach.darwin
Make.mach.hotfoot-condor        Make.mach.kolob
Make.mach.linux-gnu             Make.mach.nasa-discover
Make.mach.nasa-pleiades         Make.mach.ncsa-bluedrop
Make.mach.ncsa-bluewaters-gnu   Make.mach.ncsa-cobalt
Make.mach.nics-kraken           Make.mach.nics-kraken-gnu
Make.mach.nics-kraken-gnu-yt    Make.mach.nics-nautilus
Make.mach.orange                Make.mach.ornl-jaguar-pgi
Make.mach.scinet                Make.mach.sunnyvale
Make.mach.tacc-ranger           Make.mach.trestles
Make.mach.triton                Make.mach.triton-gnu
Make.mach.triton-intel          Make.mach.unknown

~/enzo/src/enzo $





In this example, we choose Make.mach.darwin, which is appropriate for Mac
OS X machines.




Porting

If there’s no machine file for the machine you’re on, you will have
to do a small amount of porting. However, we have attempted to
provide a wide base of Makefiles, so you should be able to find one
that is close, if not identical, to the machine you are attempting
to run Enzo on. The basic steps are as follows:


	Find a Make.mach file from a similar platform.

	Copy it to Make.mach.site-machinename (site = sdsc or owner,
machinename = hostname).

	Edit the machine-specific settings (compilers, libraries, etc.).

	Build and test.



If you expect that you will have multiple checkouts of the Enzo source code,
you should feel free to create the directory $HOME/.enzo/ and place your custom
makefiles there, and Enzo’s build system will use any machine name-matching
Makefile in that directory to provide or override Make settings.

Make sure you save your configuration file! If you’re on a big system (multiple
Enzo users), please post your file to the Enzo mailing list [http://groups.google.com/group/enzo-users], and it will be
considered for inclusion with the base Enzo distribution.




HDF5 Versions

If your system uses a version of HDF5 greater than or equal to 1.8, you
probably need to add a flag to your compile settings, unless your HDF5 library
was compiled using –with-default-api-version=v16. The simplest thing to do is
to find the line in your Make.mach file that sets up MACH_DEFINES, which may
look like this

MACH_DEFINES   = -DLINUX # Defines for the architecture; e.g. -DSUN, -DLINUX, etc.





and change it to

MACH_DEFINES   = -DLINUX -DH5_USE_16_API # Defines for the architecture; e.g. -DSUN, -DLINUX, etc.





This will ensure that the HDF5 header files expose the correct API
for Enzo.




Build the Makefile

Now that you have your configuration file, tell the build system to
use it (remember to make clean if you change any previous settings):

~/enzo/src/enzo $ make machine-darwin

 *** Execute 'gmake clean' before rebuilding executables ***

   MACHINE: Darwin (OSX Leopard)

~/enzo/src/enzo $





You may also want to know the settings (precision, etc.) that are being
use. You can find this out using make show-config. For a detailed
explanation of what these mean, see The Enzo Makefile System.

~/enzo/src/enzo $ make show-config

MACHINE: Darwin (OSX Leopard)
MACHINE-NAME: darwin

PARAMETER_MAX_SUBGRIDS  [max-subgrids-###]                : 100000
PARAMETER_MAX_BARYONS  [max-baryons-###]                  : 30
PARAMETER_MAX_TASKS_PER_NODE  [max-tasks-per-node-###]    : 8
PARAMETER_MEMORY_POOL_SIZE  [memory-pool-###]             : 100000

CONFIG_PRECISION  [precision-{32,64}]                     : 64
CONFIG_PARTICLES  [particles-{32,64,128}]                 : 64
CONFIG_INTEGERS  [integers-{32,64}]                       : 64
CONFIG_PARTICLE_IDS  [particle-id-{32,64}]                : 64
CONFIG_INITS  [inits-{32,64}]                             : 64
CONFIG_IO  [io-{32,64}]                                   : 32
CONFIG_USE_MPI  [use-mpi-{yes,no}]                        : yes
CONFIG_OBJECT_MODE  [object-mode-{32,64}]                 : 64
CONFIG_TASKMAP  [taskmap-{yes,no}]                        : no
CONFIG_PACKED_AMR  [packed-amr-{yes,no}]                  : yes
CONFIG_PACKED_MEM  [packed-mem-{yes,no}]                  : no
CONFIG_LCAPERF  [lcaperf-{yes,no}]                        : no
CONFIG_PAPI  [papi-{yes,no}]                              : no
CONFIG_PYTHON  [python-{yes,no}]                          : no
CONFIG_NEW_PROBLEM_TYPES  [new-problem-types-{yes,no}]    : no
CONFIG_ECUDA  [cuda-{yes,no}]                             : no
CONFIG_OOC_BOUNDARY  [ooc-boundary-{yes,no}]              : no
CONFIG_ACCELERATION_BOUNDARY  [acceleration-boundary-{yes,no}]    : yes
CONFIG_OPT  [opt-{warn,debug,cudadebug,high,aggressive}]  : debug
CONFIG_TESTING  [testing-{yes,no}]                        : no
CONFIG_TPVEL  [tpvel-{yes,no}]]                           : no
CONFIG_PHOTON  [photon-{yes,no}]                          : yes
CONFIG_HYPRE  [hypre-{yes,no}]                            : no
CONFIG_EMISSIVITY  [emissivity-{yes,no}]                  : no
CONFIG_USE_HDF4  [use-hdf4-{yes,no}]                      : no
CONFIG_NEW_GRID_IO  [newgridio-{yes,no}]                  : yes
CONFIG_BITWISE_IDENTICALITY  [bitwise-{yes,no}]           : no
CONFIG_FAST_SIB  [fastsib-{yes,no}]                       : yes
CONFIG_FLUX_FIX  [fluxfix-{yes,no}]                       : yes
CONFIG_GRAVITY_4S  [gravity-4s-{yes,no}]                  : no
CONFIG_ENZO_PERFORMANCE  [enzo-performance-{yes,no}]      : yes
CONFIG_LOG2ALLOC  [log2alloc-{yes,no}]                    : yes

~/enzo/src/enzo $








Build Enzo

The default build target is the main executable, Enzo.

~/enzo/src/enzo $ make
Updating DEPEND
pdating DEPEND
Compiling enzo.C
Compiling acml_st1.src
... (skipping) ...
Compiling Zeus_zTransport.C
Linking
Success!

~/enzo/src/enzo $





After compiling, you will have enzo.exe in the current directory.
If you have a failure during the compiler process, you may get enough of
an error message to track down what was responsible.  If there is a failure
during linking, examine the compile.out file to learn more about
what caused the problem.  A common problem is that you forgot to include the
current location of the HDF5 libraries in your machine-specific makefile.




Building other Tools

Building other tools is typically very straightforward; they rely on the same
Makefiles, and so should require no porting or modifications to configuration.


Inits

~/enzo/src/ring $ cd ../inits/
~/enzo/src/inits $ make
Compiling enzo_module.src90
Updating DEPEND
Compiling acml_st1.src
...
Compiling XChunk_WriteIntField.C
Linking
Success!





This will produce inits.exe.




Ring

~/enzo/src/enzo $ cd ../ring/
~/enzo/src/ring $ make
Updating DEPEND
Compiling Ring_Decomp.C
Compiling Enzo_Dims_create.C
Compiling Mpich_V1_Dims_create.c
Linking
Success!





This will produce ring.exe.




YT

To install yt, you can use the installation script provided with the yt source
distribution.  See the yt homepage [http://yt.enzotools.org/] for more
information.
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How to run an Enzo test problem

Enzo comes with a set of pre-written parameter files which are used
to test Enzo. This is useful when migrating to a new machine with
different compilers, or when new versions of compilers and
libraries are introduced. Also, all the test problems should run to
completion, which is generally not a guarantee!

At the top of each Enzo parameter file is a line like ProblemType =
23, which tells Enzo the type of problem. You can see how this
affects Enzo by inspecting InitializeNew.C. In this
example, this gets called:

if (ProblemType == 23)
  ret = TestGravityInitialize(fptr, Outfptr, TopGrid, MetaData);





which then calls the routine in TestGravityInitialize.C,
and so on. By inspecting the initializing routine for each kind of
problem, you can see what and how things are being included in the
simulation.

The test problem parameter files are inside the run subdirectory.
Please see Enzo Test Suite for a full list of test
problems. The files that end in .enzo are the Enzo parameter files,
and .inits are inits parameter files. inits files are only used for
cosmology simulations, and you can see an example of how to run
that in How to run a cosmology simulation. Let’s try a
couple of the non-cosmology test problems.


ShockPool3D test

The ShockPool3D is a purely hydrodynamical simulation testing a
shock with non-periodic boundary conditions. Once you’ve
built enzo (Obtaining and Building Enzo), make a directory
to run the test problem in. Copy enzo.exe and ShockPool3D.enzo into
that directory.
This example test will be run using an interactive session.
On Kraken [http://www.nics.tennessee.edu/computing-resources/kraken],
to run in an interactive queue, type:

qsub -I -V -q debug -lwalltime=2:00:00,size=12





12 cores (one node) is requested for two hours. Of course, this
procedure may differ on your machine. Once you’re in the
interactive session, inside your test run directory, enter:

aprun -n 12 ./enzo.exe -d ShockPool3D.enzo > 01.out





The test problem is run on 12 processors, the debug flag (-d) is
on, and the standard output is piped to a file (01.out). This took
about an hour and twenty minutes to run on Kraken. When it’s
finished, you should see Successful run, exiting. printed to
stderr. Note that if you use other supercomputers, aprun may be
replaced by ‘mpirun’, or possibly another command. Consult your
computer’s documentation for the exact command needed.

If you want to keep track of the progress of the run, in another
terminal type:

tail -f 01.out
tail -f 01.out | grep dt





The first command above gives too verbose output to keep track of
the progress. The second one will show what’s more interesting,
like the current cycle number and how deep in the AMR hierarchy the
run is going (look for Level[n] where n is the zero-based AMR level
number). This command is especially useful for batch queue jobs
where the standard out always goes to a file.




GravityTest test

The GravityTest.enzo problem only tests setting up the gravity
field of 5000 particles. A successful run looks like this and
should take less than a second, even on one processor:

test2> aprun -n 1 ./enzo.exe GravityTest.enzo > 01.out
****** GetUnits:  1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 *******
CWD test2
Global Dir set to test2
Successfully read in parameter file GravityTest.enzo.
INITIALIZATION TIME =   6.04104996e-03
Successful run, exiting.








Other Tests & Notes

All the outputs of the tests have been linked to on this page,
below. Some of the tests were run using only one processor, and
others that take more time were run using 16. All tests were run
with the debug flag turned on (which makes the output log, 01.out
more detailed). Enzo was compiled in debug mode without any
optimization turned on (gmake opt-debug). The tests that produce
large data files have only the final data output saved. If you wish
to do analysis on these datasets, you will have to change the
values of GlobalDir, BoundaryConditionName, BaryonFileName and
ParticleFileName in the restart, boundary and hierarchy files to
match where you’ve saved the data.


PressurelessCollapse

The PressurelessCollapse test required isolated boundary
conditions, so you need to compile Enzo with that turned on (gmake
isolated-bcs-yes). You will also need to turn off the top grid
bookkeeping (gmake unigrid-transpose-no).




Input Files

A few of the test require some input files to be in the run
directory. They are kept in input:

> ls input/
ATOMIC.DAT  cool_rates.in  lookup_metal0.3.data





You can either copy the files into your run directory as a matter
of habit, or copy them only if they’re needed.






Outputs


	AMRCollapseTest.tar.gz [http://lca.ucsd.edu/software/enzo/data/AMRCollapseTest.tar.gz]
- 24 MB

	AMRShockPool2D.tar.gz [http://lca.ucsd.edu/software/enzo/data/AMRShockPool2D.tar.gz]
- 35 KB

	AMRShockTube.tar.gz [http://lca.ucsd.edu/software/enzo/data/AMRShockTube.tar.gz]
- 23 KB

	AMRZeldovichPancake.tar.gz [http://lca.ucsd.edu/software/enzo/data/AMRZeldovichPancake.tar.gz]
- 72 KB

	AdiabaticExpansion.tar.gz [http://lca.ucsd.edu/software/enzo/data/AdiabaticExpansion.tar.gz]
- 31 KB

	CollapseTest.tar.gz [http://lca.ucsd.edu/software/enzo/data/CollapseTest.tar.gz]
- 5.4 MB

	CollideTest.tar.gz [http://lca.ucsd.edu/software/enzo/data/CollideTest.tar.gz]
- 7.6 MB

	DoubleMachReflection.tar.gz [http://lca.ucsd.edu/software/enzo/data/DoubleMachReflection.tar.gz]
- 2.1 MB

	ExtremeAdvectionTest.tar.gz [http://lca.ucsd.edu/software/enzo/data/ExtremeAdvectionTest.tar.gz]
- 430 KB

	GravityStripTest.tar.gz [http://lca.ucsd.edu/software/enzo/data/GravityStripTest.tar.gz]
- 12 MB

	GravityTest.tar.gz [http://lca.ucsd.edu/software/enzo/data/GravityTest.tar.gz]
- 99 KB

	GravityTestSphere.tar.gz [http://lca.ucsd.edu/software/enzo/data/GravityTestSphere.tar.gz]
- 4.6 MB

	Implosion.tar.gz [http://lca.ucsd.edu/software/enzo/data/Implosion.tar.gz]
- 5.6 MB

	ImplosionAMR.tar.gz [http://lca.ucsd.edu/software/enzo/data/ImplosionAMR.tar.gz]
- 3.5 MB
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How to run a cosmology simulation

In order to run a cosmology simulation, you’ll need to build enzo.exe,
inits.exe and ring.exe (see Obtaining and Building Enzo) inits creates the
initial conditions for your simulation, and ring splits up the root
grid which is necessary if you’re using parallel IO. Once you have
built the three executables, put them in a common directory where you
will run your test simulation. You will also save the inits and param
files (shown and discussed below) in this directory.


Creating initial conditions

The first step in preparing the simulation is to create the initial
conditions. The file inits uses is a text file which contains a
list of parameters with their associated values. These
values tell the initial conditions generator necessary information
like the simulation box size, the cosmological parameters and the
size of the root grid. The code then takes that information and
creates a set of initial conditions. Here is an example inits
file:

#
#  Generates initial grid and particle fields for a
#    CDM simulation
#
#  Cosmology Parameters
#
CosmologyOmegaBaryonNow      = 0.044
CosmologyOmegaMatterNow      = 0.27
CosmologyOmegaLambdaNow      = 0.73
CosmologyComovingBoxSize     = 10.0    // in Mpc/h
CosmologyHubbleConstantNow   = 0.71      // in units of 100 km/s/Mpc
CosmologyInitialRedshift     = 60
#
#  Power spectrum Parameters
#

PowerSpectrumType            = 11
PowerSpectrumSigma8          = 0.9
PowerSpectrumPrimordialIndex = 1.0
PowerSpectrumRandomSeed      = -584783758
#
#  Grid info
#
Rank                = 3
GridDims            = 32 32 32
InitializeGrids     = 1
GridRefinement      = 1
#
#  Particle info
#
ParticleDims        = 32 32 32
InitializeParticles = 1
ParticleRefinement  = 1
#
#  Overall field parameters
#
#
#  Names
#
ParticlePositionName = ParticlePositions
ParticleVelocityName = ParticleVelocities
GridDensityName      = GridDensity
GridVelocityName     = GridVelocities





inits is run by typing this command:

./inits.exe -d Example_Cosmology_Sim.inits





inits will produce some output to the screen to tell you what it is
doing, and will write five files: GridDensity, GridVelocities,
ParticlePositions, ParticleVelocities and PowerSpectrum.out. The
first four files contain information on initial conditions for the
baryon and dark matter componenets of the simulation, and are HDF5
files. The last file is an ascii file which contains information on
the power spectrum used to generate the initial conditions.

It is also possible to run cosmology simulations using initial
nested subgrids.




Parallel IO - the ring tool

This simulation is quite small. The root grid is only 32 cells on a
side and we allow a maximum of three levels of mesh refinement.
Still, we will use the ring tool, since it is important for larger
simulations of sizes typically used for doing science.  Additionally,
if you wish to run with 64 or more processors, you should use
ParallelRootGridIO, described in Parallel Root Grid IO.

The ring tool is part of the Enzo parallel IO (input-output)
scheme. Examine the last section of the parameter file (see below)
for this example simulation and you will see:

#
# IO parameters
#
ParallelRootGridIO = 1
ParallelParticleIO = 1





These two parameters turn on parallel IO for both grids and
particles. In a serial IO simulation where multiple processors are
being used, the master processor reads in all of the grid and
particle initial condition information and parcels out portions of
the data to the other processors. Similarly, all simulation output
goes through the master processor as well. This is fine for
relatively small simulations using only a few processors, but slows
down the code considerably when a huge simulation is being run on
hundreds of processors. Turning on the parallel IO options allows
each processor to perform its own IO, which greatly decreases the
amount of time the code spends performing IO.

The process for parallelizing grid and particle information is quite different.
Since it is known exactly where every grid cell in a structured Eulerian grid
is in space, and these cells are stored in a regular and predictable order in
the initial conditions files, turning on ParallelRootGridIO simply tells
each processor to figure out which portions of the arrays in the GridDensity
and GridVelocities belong to it, and then read in only that part of the
file. The particle files (ParticlePositions and ParticleVelocities)
store the particle information in no particular order.  In order to efficiently
parallelize the particle IO the ring tool is used.  ring is run on the same
number of processors as the simulation that you intend to run, and is typically
run just before Enzo is called for this reason.  In ring, each processor reads
in an equal fraction of the particle position and velocity information into a
list, flags the particles that belong in its simulation spatial domain, and
then passes its portion of the total list on to another processor. After each
portion of the list has made its way to every processor, each processor then
collects all of the particle and velocity information that belongs to it and
writes them out into files called PPos.nnnn and PVel.nnnn, where nnnn
is the processor number. Turning on the ParallelParticleIO flag in the Enzo
parameter file instructs Enzo to look for these files.

For the purpose of this example, you’re going to run ring and Enzo on 4
processors (this is a fixed requirement).  The number of processors used in an
MPI job is set differently on each machine, so you’ll have to figure out how
that works for you. On some machines, you can request an ‘interactive queue’ to
run small MPI jobs. On others, you may have to submit a job to the batch queue,
and wait for it to run.

To start an interactive run, it might look something like this:

qsub -I -V -l walltime=00:30:00,size=4





This tells the queuing system that you want four processors total for a
half hour of wall clock time. You may have to wait a bit until
nodes become available, and then you will probably start out back
in your home directory. You then run ring on the particle files by
typing something like this:

mpirun -n 4 ./ring.exe pv ParticlePositions ParticleVelocities





This will then produce some output to your screen, and will
generate 8 files: PPos.0000 through PPos.0003 and PVel.0000 through
PVel.0003. Note that the ‘mpirun’ command may actually be ‘aprun’
or something similar. Consult your supercomputer’s documentation to
figure out what this command should really be.

Congratulations, you’re now ready to run your cosmology
simulation!




Running an Enzo cosmology simulation

After all of this preparation, running the simulation itself should
be straightforward. First, you need to have an Enzo parameter file.
Here is an example compatible with the inits file above:

#
# AMR PROBLEM DEFINITION FILE: Cosmology Simulation (AMR version)
#
#  define problem
#
ProblemType                = 30      // cosmology simulation
TopGridRank                = 3
TopGridDimensions          = 32 32 32
SelfGravity                = 1       // gravity on
TopGridGravityBoundary     = 0       // Periodic BC for gravity
LeftFaceBoundaryCondition  = 3 3 3   // same for fluid
RightFaceBoundaryCondition = 3 3 3
#
#  problem parameters
#
CosmologySimulationOmegaBaryonNow       = 0.044
CosmologySimulationOmegaCDMNow      = 0.226
CosmologyOmegaMatterNow         = 0.27
CosmologyOmegaLambdaNow         = 0.73
CosmologySimulationDensityName          = GridDensity
CosmologySimulationVelocity1Name        = GridVelocities
CosmologySimulationVelocity2Name        = GridVelocities
CosmologySimulationVelocity3Name        = GridVelocities
CosmologySimulationParticlePositionName = ParticlePositions
CosmologySimulationParticleVelocityName = ParticleVelocities
CosmologySimulationNumberOfInitialGrids = 1
#
#  define cosmology parameters
#
ComovingCoordinates        = 1       // Expansion ON
CosmologyHubbleConstantNow = 0.71    // in km/s/Mpc
CosmologyComovingBoxSize   = 10.0  // in Mpc/h
CosmologyMaxExpansionRate  = 0.015   // maximum allowed delta(a)/a
CosmologyInitialRedshift   = 60.0      //
CosmologyFinalRedshift     = 3.0     //
GravitationalConstant      = 1       // this must be true for cosmology
#
#  set I/O and stop/start parameters
#
CosmologyOutputRedshift[0] = 25.0
CosmologyOutputRedshift[1] = 10.0
CosmologyOutputRedshift[2] = 5.0
CosmologyOutputRedshift[3] = 3.0
#
#  set hydro parameters
#
Gamma                  = 1.6667
PPMDiffusionParameter  = 0       // diffusion off
DualEnergyFormalism    = 1       // use total & internal energy
InterpolationMethod    = 1     // SecondOrderA
CourantSafetyNumber    = 0.5
ParticleCourantSafetyNumber = 0.8
FluxCorrection         = 1
ConservativeInterpolation = 0
HydroMethod            = 0
#
#  set cooling parameters
#
RadiativeCooling       = 0
MultiSpecies           = 0
RadiationFieldType     = 0
StarParticleCreation   = 0
StarParticleFeedback   = 0
#
#  set grid refinement parameters
#
StaticHierarchy           = 0    // AMR turned on!
MaximumRefinementLevel    = 3
MaximumGravityRefinementLevel = 3
RefineBy                  = 2
CellFlaggingMethod        = 2 4
MinimumEfficiency         = 0.35
MinimumOverDensityForRefinement = 4.0 4.0
MinimumMassForRefinementLevelExponent = -0.1
MinimumEnergyRatioForRefinement = 0.4

#
#  set some global parameters
#
GreensFunctionMaxNumber   = 100   // # of greens function at any one time


#
# IO parameters
#

ParallelRootGridIO = 1
ParallelParticleIO = 1





Once you’ve saved this, you start Enzo by typing:

mpirun -n 4 ./enzo.exe -d Example_Cosmology_Sim.param >& output.log





The simulation will now run. The -d flag ensures a great deal of
output, so you may redirect it into a log file called output.log
for later examination. This particular simulation shouldn’t take
too long, so you can run this in the same 30 minute interactive job
you started when you ran inits. When the simulation is done, Enzo
will display the message “Successful run, exiting.”

Congratulations! If you’ve made it this far, you have now successfully
run a cosmology simulation using Enzo!
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Sample inits and Enzo parameter files

This page contains a large number of example inits and Enzo parameter
files that should cover any possible kind of Enzo cosmology simulation
that you are interested in doing. All should run with minimal
tinkering. They can be downloaded separately below, or as a single
tarball.

Note: unless otherwise specified, inits is run by calling

inits -d <name of inits parameter file>





and Enzo is run by calling

[mpirun ...] enzo -d <name of enzo parameter file>





In both cases, the -d flag displays debugging information, and can be
omitted. Leaving out the -d flag can significantly speed up Enzo
calculations. Also note that Enzo is an MPI-parallel program, whereas
inits is not.

Unigrid dark matter-only cosmology simulation.  This is the
simplest possible Enzo cosmology simulation - a dark matter-only
calculation (so no baryons at all) and no adaptive mesh. See the
inits parameter file and
Enzo parameter file.

AMR dark matter-only cosmology simulation.  This is a dark
matter-only cosmology calculation (using the same initial conditions
as the previous dm-only run) but with adaptive mesh refinement turned
on.  See the inits parameter file
and Enzo parameter file.

Unigrid hydro+dark matter cosmology simulation (adiabatic).  This
is a dark matter plus hydro cosmology calculation without adaptive
mesh refinement and no additional physics.  See the inits
parameter file and Enzo
parameter file.

AMR hydro+dark matter cosmology simulation (adiabatic).  This is a
dark matter plus hydro cosmology calculation (using the same initial
conditions as the previous dm+hydro run)**with** adaptive mesh
refinement (refining everywhere in the simulation volume) and no
additional physics.  See the inits parameter file and Enzo parameter file.

AMR hydro+dark matter cosmology simulation (lots of physics).
This is a dark matter plus hydro cosmology calculation (using the same
initial conditions as the previous two dm+hydro runs) with
adaptive mesh refinement (refining everywhere in the simulation
volume) and including radiative cooling, six species primordial
chemistry, a uniform metagalactic radiation background, and
prescriptions for star formation and feedback.  See the
inits parameter file and
Enzo parameter file.

AMR hydro+dark matter nested-grid cosmology simulation (lots of
physics).  This is a dark matter plus hydro cosmology calculation
with two static nested grids providing excellent spatial and dark
matter mass resolution for a single Local Group-sized halo and its
progenitors. This simulation only refines in a small subvolume of the
calculation, and includes radiative cooling, six species primordial
chemistry, a uniform metagalactic radiation background, and
prescriptions for star formation and feedback. All parameter files can
be downloaded in one single tarball. Note that inits works differently
for multi-grid setups. Instead of calling inits one time, it is called
N times, where N is the number of grids. For this example, where there
are three grids total (one root grid and two nested subgrids), the
procedure would be:

inits -d -s SubGridFile.inits  TopGridFile.inits
inits -d -s SubSubGridFile.inits SubGridFile.inits
inits -d SubSubGridFile.inits





(but note that there is now an easier way to do multiple-grid
initialization with inits – see Using inits).
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Writing Enzo Parameter Files

Putting together a parameter file for Enzo is possibly the most
critical step when setting up a simulation, and is certainly the step
which is most fraught with peril. There are over 200 parameters that
one can set - see Enzo Parameter List for a complete
listing. For the most part, defaults are set to be sane values for
cosmological simulations, and most physics packages are turned off by
default, so that you have to explicitly turn on modules. All physics
packages are compiled into Enzo (unlike codes such as ZEUS-MP 1.0,
where you have to recompile the code in order to enable new physics).

It is inadvisable for a novice to put together a parameter file from
scratch. Several parameter files are available for download at
Sample inits and Enzo parameter files. The simulations include:


	dark matter-only unigrid and AMR simulations,

	dark matter + hydro unigrid and AMR simulations,

	an AMR dm + hydro simulation with multiple nested grids and a
limited refinement region.



In order to make the most of this tutorial it is advisable to have
one or more of these parameter files open while reading this page.
For the purposes of this tutorial we assume that the user is
putting together a cosmology simulation and has already generated
the initial conditions files using inits.

All parameters are put into a plain text file (one parameter per
line), the name of which is fed into Enzo at execution time at the
command line. Typically, a parameter is set by writing the
parameter name, an equals sign, and then the parameter value or
values, like this:

NumberOfBufferZones = 3





You must leave at least one space between the parameter, the equals
sign, and the parameter value. It’s fine if you use more than one
space - after the first space, whitespace is unimportant. All lines
which start with a # (pound sign) are treated as comments and
ignored. In addition, you can have inline comments by using the
same pound sign, or two forward slashes // after the parameter line.

NumberOfBufferZones = 3 // More may be needed depending on physics used.






Initialization parameters

Complete descriptions of all initialization parameters are given
here. The most fundamental initialization parameter you have to set
is ProblemType, which specifies the type of problem to be run, and
therefore the way that Enzo initiates the data. A cosmology
simulation is problem type 30. As started before, for the purposes
of this introduction I’m assuming that you are generating a
cosmology simulation, so you would put this line in the parameter
file:

ProblemType = 30





TopGridRank specifies the spatial dimensionality of your problem
(1, 2 or 3 dimensions), and must be set. TopGridDimensions
specifies the number of root grid cells along each axis. For a 3D
simulation with 128 grid cells along each axis on the root grid,
put this in the parameter file:

TopGridRank = 3
TopGridDimensions = 128 128 128





Additionally, you must specify the names of the initial conditions
files with contain the baryon density and velocity information and
the dark matter particle positions and velocities. These are
controlled via the parameters CosmologySimulationDensityName,
CosmologySimulationVelocity[123]Name (where 1, 2 and 3 correspond
to the x, y and z directions, respectively),
CosmologySimulationParticlePositionName and
CosmologySimulationParticleVelocityName. Assuming that the baryon
velocity information is all in a single file, and that the baryon
density and velocity file names are GridDensity and GridVelocities,
and that the particle position and velocity files are named
ParticlePositions and ParticleVelocities, these parameters would be
set as follows:

CosmologySimulationDensityName = GridDensity
CosmologySimulationVelocity1Name = GridVelocities
CosmologySimulationVelocity2Name = GridVelocities
CosmologySimulationVelocity3Name = GridVelocities
CosmologySimulationParticlePositionName = ParticlePositions
CosmologySimulationParticleVelocityName = ParticleVelocities





Some more advanced are parameters in the Initialization Parameters
section control domain and boundary value specifications. These
should NOT be altered unless you really, really know what you’re
doing!




Cosmology

Complete descriptions of all cosmology parameters are given
here and
here. ComovingCoordinates determines
whether comoving
coordinates are used or not. In practice, turning this off turns
off all of the cosmology machinery, so you want to leave it set to
1 for a cosmology simulation. CosmologyInitialRedshift and
CosmologyFinalRedshift control the start and end times of the
simulation, respectively. CosmologyHubbleConstantNow sets the
Hubble parameter, and is specified at z=0 in units of 100 km/s/Mpc.
CosmologyComovingBoxSize sets the size of the box to be simulated
(in units of Mpc/h) at z=0. CosmologySimulationOmegaBaryonNow,
CosmologySimulationOmegaCDMNow, CosmologyOmegaMatterNow, and
CosmologyOmegaLambdaNow set the amounts of baryons, dark matter,
total matter, and vacuum energy (in units of the critical density at
z=0). Setting CosmologySimulationUseMetallicityField to 1 will
create an additional tracer field for following metals. This is handy for
simulations with star formation and feedback (described below). For
example, in a cosmology simulation with box size 100 Mpc/h with
approximately the cosmological parameters determined by WMAP, which
starts at z=50 and ends at z=2, and has a metal tracer field, we
put the following into the parameter file:

ComovingCoordinates = 1
CosmologyInitialRedshift = 50.0
CosmologyFinalRedshift = 2.0
CosmologyHubbleConstantNow = 0.7
CosmologyComovingBoxSize = 100.0
CosmologyOmegaMatterNow = 0.3
CosmologyOmegaLambdaNow = 0.7
CosmologySimulationOmegaBaryonNow = 0.04
CosmologySimulationOmegaCDMNow = 0.26
CosmologySimulationUseMetallicityField = 1








Gravity and Particle Parameters

The parameter list sections on gravity particle positions are here
and here, respectively. The significant gravity-related parameters
are SelfGravity, which turns gravity on (1) or off (0) and
GravitationalConstant, which must be 1 in cosmological
simulations. BaryonSelfGravityApproximation controls whether
gravity for baryons is determined by a quick and reasonable
approximation. It should be left on (1) in most cases. For a
cosmological simulation with self gravity, we would put the
following parameters into the startup file:

SelfGravity = 1
GravitationalConstant = 1
BaryonSelfGravityApproximation = 1





We discuss some AMR and parallelization-related particle parameters
in later sections.




Adiabatic hydrodynamics parameters

The parameter listing section on hydro parameters can be found
here. The most fundamental hydro parameter that you can set is
HydroMethod, which lets you decide between the Piecewise Parabolic
Method (aka PPM; option 0), or the finite-difference method used in
the Zeus astrophysics code (option 2). PPM is the more advanced and
optimized method. The Zeus method uses an artificial viscosity-based
scheme and may not be suited for some types of work. When using PPM in
a cosmological simulation, it is important to turn
DualEnergyFormalism on (1), which makes total-energy schemes such
as PPM stable in a regime where there are hypersonic fluid flows,
which is quite common in cosmology. The final parameter that one must
set is Gamma, the ratio of specific heats for an ideal gas. If
MultiSpecies (discussed later in Radiative Cooling and UV Physics Parameters) is on, this is
ignored. For a cosmological simulation where we wish to use PPM and
have Gamma = 5/3, we use the following parameters:

HydroMethod = 0
DualEnergyFormalism = 1
Gamma = 1.66667





In addition to these three parameters, there are several others
which control more subtle aspects of the two hydro methods. See the
parameter file listing of hydro parameters for more information on
these.

One final note: If you are interested in performing simulations
where the gas has an isothermal equation of state (gamma = 1), this
can be approximated without crashing the code by setting the
parameter Gamma equal to a number which is reasonably close to one,
such as 1.001.




AMR Hierarchy Control Parameters

These parameters can be found in the parameter list page here. They
control whether or not the simulation uses adaptive mesh
refinement, and if so, the characteristics of the adaptive meshing
grid creation and refinement criteria. We’ll concentrate on a
simulation with only a single initial grid first, and then discuss
multiple levels of initial grids in a subsection.

The most fundamental AMR parameter is StaticHierarchy. When this is
on (1), the code is a unigrid code. When it is off (0), adaptive
mesh is turned on. RefineBy controls the refinement factor - for
example, a value of 2 means that a child grid is twice as highly
refined as its parent grid. It is important to set RefineBy to 2
when using cosmology simulations - this is because if you set it to
a larger number (say 4), the ratio of particle mass to gas mass in
a cell grows by a factor of eight during each refinement, causing
extremely unphysical effects.
MaximumRefinementLevel determines how many possible levels of
refinement a given simulation can attain, and
MaximumGravityRefinementLevel defines the maximum level at which
gravitational accelerations are computed. More highly refined
levels have their gravitational accelerations interpolated from
this level, which effectively provides smoothing of the
gravitational force on the spatial resolution of the grids at
MaximumGravityRefinementLevel. A simulation with AMR turned on,
where there are 6 levels of refinement (with gravity being smoothed
on level 4) and where each child grid is twice as highly resolved
as its parent grid would have these parameters set as follows:

StaticHierarchy = 0
RefineBy = 2
MaximumRefinementLevel = 6
MaximumGravityRefinementLevel = 4





Once the AMR is turned on, you must specify how and where the
hierarchy
refines. The parameter CellFlaggingMethod controls the method in
which cells are flagged, and can be set with multiple values. We
find that refining by baryon and dark matter mass (options 2 and 4)
are typically useful in cosmological simulations. The parameter
MinimumOverDensityForRefinement allows you to control the
overdensity at which a given grid is refined, and can is set with
multiple values as well. Another very useful parameter is
MinimumMassForRefinementLevelExponent, which modifies the cell
masses/overdensities used for refining grid cells. See the
parameter page for a more detailed explanation.
Leaving this with a value of 0.0 ensures that gas mass resolution
in dense regions remains more-or-less Lagrangian in nature.
Negative values make the refinement super-Lagrangian (ie, each
level has less gas mass per cell on average than the coarser level
above it) and positive values make the refinement sub-lagrangian.
In an AMR simulation where the AMR triggers on baryon and dark
matter overdensities in a given cell of 4.0 and 8.0, respectively,
where the refinement is slightly super-Lagrangian, these paramaters
would be set as follows:

CellFlaggingMethod = 2 4
MinimumOverDensityForRefinement = 4.0 8.0
MinimumMassForRefinementLevelExponent = -0.1





At times it is very useful to constrain your simulation such that
only a small region is adaptively refined (the default is to refine
over an entire simulation volume). For example, if you wish to
study the formation of a particular galaxy in a very large volume,
you may wish to only refine in the small region around where that
galaxy forms in your simulation in order to save on computational
expense and dataset size. Two parameters, RefineRegionLeftEdge and
RefineRegionRightEdge allow control of this. For example, if we
only want to refine in the inner half of the volume (0.25 - 0.75
along each axis), we would set these parameters as follows:

RefineRegionLeftEdge = 0.25 0.25 0.25
RefineRegionRightEdge = 0.75 0.75 0.75





This pair of parameters can be combined with the use of nested
initial grids (discussed in the next subsection) to get simulations
with extremely high dark matter mass and spatial resolution in a
small volume at reasonable computational cost.


Multiple nested grids

At times it is highly advantageous to use multiple nested grids.
This is extremely useful in a situation where you are interested in
a relatively small region of space where you need very good dark
matter mass resolution and spatial resolution while at the same
time still resolving large scale structure in order to preserve
gravitational tidal forces. An excellent example of this is
formation of the first generation of objects in the universe, where
we are interested in a relatively small (106 solar mass)
halo which is strongly tidally influenced by the large-scale
structure around it. It is important to resolve this halo with a
large number of dark matter particles in order to reduce frictional
heating, but the substructure of the distant large-scale structure
is not necessarily interesting, so it can be resolved by very
massive particles. One could avoid the complication of multiple
grids by using a single very large grid - however, this would be
far more computationally expensive.

Let us assume for the purpose of this example that in addition to
the initial root grid grids (having 128 grid cells along each axis)
there are two subgrids, each of which is half the size of the one
above it in each spatial direction (so subgrid 1 spans from
0.25-0.75 in units of the box size and subgrid 2 goes from
0.375-0.625 in each direction). If each grid is twice as highly
refined spatially as the one above it, the dark matter particles on
that level are 8 times smaller, so the dark matter mass resolution
on grid #2 is 64 times better than on the root grid, while the
total number of initial grid cells only increases by a factor of
three (since each grid is half the size, but twice as highly
refined as the one above it, the total number of grid cells remains
the same). Note: See the page on generating initial conditions for
more information on creating this sort of set of nested grids.

When a simulation with more than one initial grid is run, the total
number of initial grids is specified by setting
CosmologySimulationNumberOfInitialGrids. The parameter
CosmologySimulationGridDimension[#] is an array of three integers
setting the grid dimensions of each nested grid, and
CosmologySimulationGridLeftEdge[#] and
CosmologySimulationGridRightEdge[#] specify the left and right
edges of the grid spatially, in units of the box size. In the last
three parameters, “#” is replaced with the grid number. The root
grid is grid 0. None of the previous three parameters need to be
set for the root grid. For the setup described above, the parameter
file would be set as follows:

CosmologySimulationNumberOfInitialGrids = 3
CosmologySimulationGridDimension[1] = 128 128 128
CosmologySimulationGridLeftEdge[1] = 0.25 0.25 0.25
CosmologySimulationGridRightEdge[1] = 0.75 0.75 0.75
CosmologySimulationGridLevel[1] = 1
CosmologySimulationGridDimension[2] = 128 128 128
CosmologySimulationGridLeftEdge[2] = 0.375 0.375 0.375
CosmologySimulationGridRightEdge[2] = 0.625 0.625 0.625
CosmologySimulationGridLevel[2] = 2





Multiple initial grids can be used with or without AMR being turned
on. If AMR is used, the parameter MinimumOverDensityForRefinement
must be modified as well. It is advisable to carefully read the
entry for this parameter in the parameter list (in this section).
The minimum overdensity
needs to be divided by r(d*l), where r is the refinement
factor, d is the dimensionality, and l is the zero-based highest
level of the initial grids. So if we wish for the same values for
MinimumOverDensityForRefinement used previous to apply on the most
highly refined grid, we must divide the set values by
2(3*2) = 64. In addition, one should only refine on the
highest level, so we must reset RefineRegionLeftEdge and
RefineRegionRightEdge. The parameters would be reset as follows:

RefineRegionLeftEdge = 0.375 0.375 0.375
RefineRegionRightEdge = 0.625 0.625 0.625
MinimumOverDensityForRefinement = 0.0625 0.125





A note: When creating multi-level intial conditions, make sure that
the initial conditions files for all levels have the same file name
(ie, GridDensity), but that each file has an extension which is an
integer corresponding to its level. For example, the root grid
GridDensity file would be GridDensity.0, the level 1 file would be
GridDensity.1, and so forth. The parameters which describe file
names (discussed above in the section on initialization parameters)
should only have the file name to the left of the period the period
(as in a simulation with a single initial grid), ie,

CosmologySimulationDensityName = GridDensity








Nested Grids and Particles

When initializing a nested grid problem, there can arise an issue of
lost particles as a result of running ring. Please see
Particles in Nested Grid Cosmology Simulations for more information.






I/O Parameters

These parameters, defined in more detail in
Controlling Enzo data output, control all aspects of Enzo’s data
output. One can output data in a cosmological simulation in both a
time-based and redshift-based manner. To output data regularly in
time, one sets dtDataDump to a value greater than zero. The size
of this number, which is in units of Enzo’s internal time variable,
controls the output frequency.  See the Enzo user’s manual section on
output format for more information on physical units. Data can be
output at specific redshifts as controlled by
CosmologyOutputRedshift[#], where # is the number of the output
dump (with a maximum of 10,000 zero-based numbers). The name of the
time-based output files are controlled by the parameter
DataDumpName and the redshift-based output files have filenames
controlled by RedshiftDumpName. For example, if we want to output
data every time the code advances by dt=2.0 (in code units) with file
hierarchiess named time_0000, time_0001, etc., and ALSO output
explicitly at redshifts 10, 5, 3 and 1 with file hierarchy names
RedshiftOutput0000, RedshiftOutput0001, etc., we would set
these parameters as follows:

dtDataDump = 2.0
DataDumpName = time_
RedshiftDumpName = RedshiftOutput
CosmologyOutputRedshift[0] = 10.0
CosmologyOutputRedshift[1] = 5.0
CosmologyOutputRedshift[2] = 3.0
CosmologyOutputRedshift[3] = 1.0





Note that Enzo always outputs outputs data at the end of the
simulation, regardless of the settings of dtDataDump and
CosmologyOutputRedshift.




Radiative Cooling and UV Physics Parameters

Enzo comes with multiple ways to calculate baryon cooling and a
metagalactic UV background, as described in detail here. The
parameter RadiativeCooling controls whether or not a radiative
cooling module is called for each grid. The cooling is calculated
either by assuming equilibrium cooling and reading in a cooling
curve, or by computing the cooling directly from the species
abundances. The parameter MultiSpecies controls which cooling
module is called - if MultiSpecies is off (0) the equilibrium model
is assumed, and if it is on (1 or 2) then nonequilibrium cooling is
calculated using either 6 or 9 ionization states of hydrogen and
helium (corresponding to MultiSpecies = 1 or 2, respectively). The
UV background is controlled using the parameter RadiationFieldType.
Currently there are roughly a dozen backgrounds to choose from.
RadiationFieldType is turned off by default, and can only be used
when Multispecies = 1. For example, if we wish to use a
nonequilibrium cooling model with a Haardt and Madau background
with qalpha= -1.8, we would set these parameters as follows:

RadiativeCooling = 1
MultiSpecies = 1
RadiationFieldType = 2








Star Formation and Feedback Physics Parameters

Enzo has multiple routines for star formation and feedback.  Star
particle formation and feedback are controlled separately, by the
parameters StarParticleCreation and StarParticleFeedback.
Multiple types of star formation and feedback can be used, e.g. models
for Pop III stars for metal-free gas and models for Pop II stars for
metal-enriched gas.  These routines are disabled when these parameters
are set equal to 0.  These parameters are bitwise to allow multiple
types of star formation routines can be used in a single
simulation. For example if methods 1 and 3 are desired, the user would
specify 10 (21+ 23), or if methods 0, 1 and 4
are wanted, this would be 19 (20+ 21+ 24).  See Star Formation and Feedback Parameters for more details.

They are turned on when the i-th bit is flagged.  The value of 2 is
the recommended value. The most commonly used routines (2) are based
upon an algorithm by Cen & Ostriker, and there are a number of free
parameters. Note that it is possible to turn star particle formation
on while leaving feedback off, but not the other way around.

For the star particle creation algorithm, stars are allowed to form
only in cells where a minimum overdensity is reached, as defined by
StarMakerOverDensityThreshold. Additionally, gas can only turn into
stars with an efficiency controlled by StarMakerMassEfficiency and
at a rate limited by StarMakerMinimumDynamicalTime, and the minimum
mass of any given particle is controlled by the parameter
StarMakerMinimumStarMass, which serves to limit the number of star
particles. For example, if we wish to use the “standard” star
formation scenario where stars can only form in cells which are at
least 100 times the mean density, with a minimum dynamical time of
106 years and a minimum mass of 107 solar
masses, and where only 10% of the baryon gas in a cell can be
converted into stars in any given timestep, we would set these
parameters as follows:

StarParticleCreation = 2
StarMakerOverDensityThreshold = 100.0
StarMakerMassEfficiency = 0.1
StarMakerMinimumDynamicalTime = 1.0e6
StarMakerMinimumStarMass = 1.0e7





Star particles can provide feedback into the Inter-Galactic Medium via stellar winds,
thermal energy and metal pollution. The parameter
StarMassEjectionFraction controls the fraction of the total initial
mass of the star particle which is eventually returned to the gas
phase. StarMetalYield controls the mass fraction of metals produced
by each star particle that forms, and StarEnergyToThermalFeedback
controls the fraction of the rest-mass energy of the stars created
which is returned to the gas phase as thermal energy. Note that the
latter two parameters are somewhat constrained by theory and
observation to be somewhere around 0.02 and 1.0e-5, respectively.
The ejection fraction is poorly constrained as of right now. Also,
metal feedback only takes place if the metallicity field is turned
on (CosmologySimulationUseMetallicityField = 1). As an example, if
we wish to use the ‘standard’ star feedback where 25% of the total
stellar mass is returned to the gas phase, the yield is 0.02 and
10-5 of the rest mass is returned as thermal energy, we
set our parameters as follows:

StarParticleFeedback = 2
StarMassEjectionFraction = 0.25
StarMetalYield = 0.02
StarEnergyToThermalFeedback = 1.0e-5
CosmologySimulationUseMetallicityField = 1





When using the star formation and feedback algorithms it is
important to consider the regime of validity of our assumptions.
Each “star particle” is supposed to represent an ensemble of stars,
which we can characterize with the free parameters described above.
This purely phenomenological model is only reasonable as long as
the typical mass of the star particles is much greater than the
mass of the heaviest stars so that the assumption of averaging over
a large population is valid. When the typical star particle mass
drops to the point where it is comparable to the mass of a large
star, these assumptions must be reexamined and our algorithms
reformulated.




IO Parallelization Options

One of Enzo’s great strengths is that it is possible to do
extremely large simulations on distributed memory machines. For
example, it is possible to intialize a 10243 root grid
simulation on a linux cluster where any individual node has 1 or 2
GB of memory, which is on the order of 200 times less than the
total dataset size! This is possible because the reading of initial
conditions and writing out of data dumps is fully parallelized - at
startup, when the parameter ParallelRootGridIO is turned on each
processor only reads the portion of the root grid which is within
its computational domain, and when ParallelParticleIO is turned on
each processor only reads in the particles within its domain
(though preprocessing is needed - see below). Additionally, the
parameter Unigrid should be turned on for simulations without AMR,
as it saves roughly a factor of two in memory on startup, allowing
the code to perform even larger simulations for a given computer
size. If we wish to perform an extremely large unigrid simulation
with parallel root grid and particle IO, we would set the following
parameters:

ParallelParticleIO = 1
ParallelRootGridIO = 1
Unigrid = 1





AMR simulations can be run with ParallelRootGridIO and
ParallelParticleIO on, though you must be careful to turn off the
Unigrid parameter. In addition, it is important to note that in the
current version of Enzo you must run the program called “ring” on
the particle position and velocity files before Enzo is started in
order to take advantage of the parallel particle IO. Assuming the
particle position and velocity files are named ParticlePositions
and ParticleVelocities, respectively, this is done by running:

mpirun -np [N] ring ParticlePositions ParticleVelocities





Where mpirun is the executable responsible for running MPI programs
and “-np [N]” tells the machine that there are [N] processors. This
number of processors must be the same as the number which Enzo will
be run with!




Notes

This page is intended to help novice Enzo users put together parameter
files for their first simulation and therefore is not intended to be
an exhaustive list of parameters nor a complete description of each
parameter mentioned. It would be wise to refer to the Enzo user
guide’s Enzo Parameter List for a more-or-less complete list of
AMR parameters, some of which may be extremely useful for your
specific application.
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Data Analysis Basics

Data analysis in Enzo can be complicated. There are excellent premade
packages available for doing Enzo data analysis.  However, it is likely
that your data analysis needs will grow beyond these tools.


HDF5 Tools

Enzo reads in initial conditions files and outputs simulation data using the
HDF5 [http://www.hdfgroup.org/] structured data format (created and
maintained by the NCSA HDF group). Though this format takes a bit more effort
to code than pure C/C++ binary output, we find that the advantages are worth
it. Unlike raw binary, HDF5 is completely machine-portable and the HDF5
library takes care of error checking. There are many useful standalone
utilities included in the HDF5 package that allow a user to examine the
contents and structure of a dataset. In addition, there are several
visualization and data analysis packages that are HDF5-compatible. See the
page on Data Vizualization for more information about this. The NCSA HDF group
has an excellent tutorial on working with HDF5.

Note that as of the Enzo 2.0 code release, Enzo still supports reading the HDF4
data format, but not writing to it. We strongly suggest that new users
completely avoid this and use the HDF5 version instead. Enzo’s parallel IO
only works with HDF5, and we are encouraging users migrate as soon as is
feasible.




Using YT to Analyze Data

If you have installed YT [http://yt.enzotools.org/] along with
Enzo (as suggested in the
build instructions Obtaining and Building Enzo), you
should be able to use it to find halos, examine profiles, prepare
plots and handle data directly via physically meaningful objects.
Documentation [http://yt.enzotools.org/doc/], a
wiki [http://yt.enzotools.org/wiki] and a
mailing list [http://lists.spacepope.org/listinfo.cgi/yt-users-spacepope.org]
are available for support and assistance with installation and
usage as well as a brief introduction in these documents Analyzing With YT




Analysis with VisIt

Another tool that has a native reader for Enzo data is
VisIt [https://wci.llnl.gov/codes/visit/], a parallel VTK-based
visualization and analysis tool.

From the VisIt Users website [http://visitusers.org/]:


VisIt is a free interactive parallel visualization and graphical
analysis tool for viewing scientific data on Unix and PC platforms.
Users can quickly generate visualizations from their data, animate
them through time, manipulate them, and save the resulting images
for presentations. VisIt contains a rich set of visualization
features so that you can view your data in a variety of ways. It
can be used to visualize scalar and vector fields defined on two-
and three-dimensional (2D and 3D) structured and unstructured
meshes. VisIt was designed to handle very large data set sizes in
the tera- to peta-scale range and yet can also handle small data
sets in the kilobyte range.


The caveat is that as of version 1.11.2, VisIt only understands the
original unpacked AMR format. However, the packed-AMR is in the
VisIt development version, and will be included in the next release
(1.12). If would like this functionality sooner, it’s not too much
work. Here’s how to begin:


	Download the following:
	The
1.11.2 source distribution [https://wci.llnl.gov/codes/visit/1.11.2/visit1.11.2.tar.gz]

	The
1.11.2 build_visit script [https://wci.llnl.gov/codes/visit/1.11.2/build_visit]

	An updated
avtEnzoFileFormat.C [https://email.ornl.gov/pipermail/visit-developers/attachments/20090406/b8dc7fe5/avtEnzoFileFormat.C]

	An updated
avtEnzoFileFormat.h [https://email.ornl.gov/pipermail/visit-developers/attachments/20090406/b8dc7fe5/avtEnzoFileFormat.h]





	Untar the source tar file,

	replace the two files named avtEnzo* in
visit1.11.2/src/databases/Enzo/ with the ones you’ve just
downloaded, and

	retar the file, keeping the same directory structure.



(You can do this without untarring and retarring, but this is a bit
clearer for those not familiar with tar.)
From this point, you can
build and install VisIt using the build_visit script [http://visitusers.org/index.php?title=Build_visit_overview].
When you do this, remember to do two things:


	Use the
TARBALL [http://visitusers.org/index.php?title=Build_visit_overview#Tarball_.28-t_CLI_option.2C_VISIT_FILE_env_variable.29]
option to specify the tar file for the script to unpack. Failing to
do this will cause the script to download a new tar file, without
the changes that you need.

	Select both
HDF5 [http://visitusers.org/index.php?title=Build_visit_overview#HDF5_.28–hdf5_CLI_option.2C_HDF5_FILE.2C_HDF5_VERSION.2C_and_HDF5_DIR__env_variables.29]
and
HDF4 [http://visitusers.org/index.php?title=Build_visit_overview#HDF4_.28–hdf4_CLI_option.2C_HDF4_FILE.2C_HDF4_VERSION.2C_and_HDF4_DIR__env_variables.29]
as optional third-party libraries. This may not strictly be
necessary, if you already have HDF5 and HDF4 installed on your
system, but the script isn’t clear on how to specify which HDF5
installation to use. (HDF4 needs to be available to satisfy a
dependency check for building the Enzo reader. We’ll ask to have
this updated in future versions of VisIt.)






Writing your own tools, I - the Enzo Grid Hierarchy

Enzo outputs each individual adaptive mesh block as its own grid
file. Each of these files is completely self-contained, and has
information about all of the grid cells that are within that volume
of space. Information on the size and spatial location of a given
grid file can be obtained from the hierarchy file, which has the
file extension ”.hierarchy”. This ascii file has a listing for each
grid that looks something like this:

Grid = 26
GridRank          = 3
GridDimension     = 34 22 28
GridStartIndex    = 3 3 3
GridEndIndex      = 30 18 24
GridLeftEdge      = 0.5 0.28125 0.078125
GridRightEdge     = 0.71875 0.40625 0.25
Time              = 101.45392321467
SubgridsAreStatic = 0
NumberOfBaryonFields = 5
FieldType = 0 1 4 5 6
BaryonFileName = RedshiftOutput0011.grid0026
CourantSafetyNumber    = 0.600000
PPMFlatteningParameter = 0
PPMDiffusionParameter  = 0
PPMSteepeningParameter = 0
NumberOfParticles   = 804
ParticleFileName = RedshiftOutput0011.grid0026
GravityBoundaryType = 2
Pointer: Grid[26]->NextGridThisLevel = 27





GridRank gives the dimensionality of the grid (this one is 3D),
GridDimension gives the grid size in grid cells, including ghost
zones. GridStartIndex and GridEndIndex give the starting and ending
indices of the non-ghost zone cells, respectively. The total size
of the baryon datasets in each grid along dimension i is (1+
GridEndIndex[i] - GridStartIndex[i]). GridLeftEdge and
GridRightEdge give the physical edges of the grids (without ghost
zones) in each dimension. NumberOfParticles gives the number of
dark matter particles (and/or star particles, for simulations
containing star particles) in a given grid. Note that when there
are multiple grids covering a given region of space at various
levels of resolution, particles are stored in the most highly
refined grid. BaryonFileName is the name of the actual grid file,
and should be the same as ParticleFileName. Time is the simulation
time, and should be the same as InitialTime in the parameter file
for the same data dump. The other parameters for each entry are
more advanced and probably not relevant for simple data analysis.

Possibly the greatest source of potential confusion in Enzo’s
datasets is the overlap of grid cells. In a simulation, when a
given grid is further refined, the coarse cells which have not been
refined are still kept. The solution to the hydro and gravity
equations are still calculated on that level, but are updated with
information from more highly refined levels. What this is means is
that a volume of space which has been refined beyond the root grid
is covered by multiple grid patches at different levels of
resolution. Typically, when doing analysis you only want the most
highly refined information for a given region of space (or the most
highly refined up to a certain level) so that you don’t
double-count (or worse) the gas in a given cell. Look at this
example analysis code.




Writing your own tools, II - Enzo Physical Units

Yet another significant source of confusion is the units that Enzo
uses. When doing a cosmology simulation, the code uses a set of
units that make most quantities on the order of unity (in
principle). The Enzo manual section on
the code output format Enzo Output Formats
explains how to convert code units to cgs units. However, there are
some subtleties:


	Density fields

	All density fields are in the units described in the AMR guide
except electron density. Electron density is only output when
MultiSpecies is turned on, and in order to convert the electron
density to cgs it must be multiplied by the code density conversion
factor and then (m:sub:e/m:sub:p), where
m:sub:eand m:sub:pare the electron
and proton rest masses (making electron density units different
from the other fields by a factor of m:sub:e/m:sub:p).
The reason this is
done is so that in the code the electron density can be computed
directly from the abundances of the ionized species.

	Energy fields

	There are two possible energy fields that appear in the code - Gas
energy and total energy. Both are in units of specific energy,
ie, energy per unit mass. When Zeus hydro is being used
(HydroMethod = 2, there should be only one energy field - “total
energy”. This is a misnomer - the Zeus hydro method only follows
the specific internal (ie, thermal) energy of the gas explicitly.
When the total energy is needed, it is calculated from the
velocities. When PPM is used (HydroMethod = 0) the number of energy
fields depends on whether or not DualEnergyFormalism is turned on
or off. If it is ON (1), there is a “gas energy” field and a “total
energy” field, where “gas energy” is the specific internal energy
and “total energy” is “gas energy” plus the specific kinetic energy
of the gas in that cell. If DualEnergyFormalism is OFF (0), there
should only be “total energy”, which is kinetic+internal specific
energies. Confused yet?

	Particle mass field

	Particle “masses” are actually stored as densities. This is to
facilitate calculation of the gravitational potential. The net
result of this is that, in order to calculate the stored particle
“mass” to a physical mass, you must first multiply this field by the volume of
a cell in which the particle resides.
Remember that particle data is only stored in the most refined grid that
covers that portion of the simulational volume.



When the simulation is done, Enzo will display the message
“Successful run, exiting.”
Enzo is a complicated code, with a similarly complicated output
format. See the Enzo User Guide page on
the Enzo output format Enzo Output Formats for
more information on the data outputs.

Congratulations! If you’ve made it this far, you have now
successfully run a simulation using Enzo!




Example Data and Analysis

The sample data generated by this simulation is
available online [http://lca.ucsd.edu/software/enzo/data/cookbook/].
You can use it as sample data for the the
YT tutorial [http://yt-project.org/doc/orientation/].
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Controlling Enzo data output

How and when Enzo outputs data is described below.  There are five ways to
control when data is output, two output formats, and two pitfalls when
determining how to output data from your Enzo simulation.


Data Formats and Files

There are two output formats for Enzo data. In both cases, each
data dump gets its own directory.

Each data dump writes several key files. NNNN denotes the dump
number (i.e. 0001) and basename is something like RedshiftOutput or
data or DD}.

All output files are also restart files. It’s not necessarily wise
to write in 32 bit format if you’re computing in 64, though, as
you’ll lose all the extra precision when you restart. (These are
makefile flags.)

basenameNNNN:

The parameter file. This contains general simulation parameters,
dump time, cycle, and all the parameters defined here. It's worth
your time to be familiar with what's in this file.





basenameNNNN.hierarchy:

The hierarchy file in text format. Contains a description of the hierarchy. One
entry for each grid, including information like the Grid Size, the
position in the volume, it's position in the hierarchy.





basenameNNNN.boundary:

A description of the boundary (plain text.) Basically a meta
description and filename for the next file





basenameNNNN.boundary.hdf5:

Actually contains the boundary information.





basenameNNNN.harrays:

The hierarchy of grids stored in HDF5 binary format.






Packed AMR

This is the default output format. Each processor outputs all the grids it owns.
In addition to the parameter, hierarchy, and boundary files which may or may
not be described elsewhere, data is output in one basenameNNNN.taskmapCCCC}
file for each processor, which contains a map between grid number and HDF5
file, and one basenameNNNN.cpuCCCC for each processor NNNN and CCCC are the
dump number and cpu number, respectively.

basenameNNNN.cpuCCCC is an HDF5 file which contains an HDF5 group for each
grid. Each grid in turn contains a dataset for each of the fields in the
simulation.

~/DD0100>h5ls data0100.cpu0003
Grid00000002             Group
Grid00000026             Group
~/DD0100>h5ls data0100.cpu0003/Grid00000002
Density                  Dataset {16, 16, 32}
z-velocity               Dataset {16, 16, 32}










Pathnames

In previous versions of Enzo, the fully-qualified path to each file was output
in the .hierarchy file, which requires modifying the .hierarchy file
every time the data was moved.  This has changed to be only the relative path
to each data file, which largely eliminates the problem.  To restore the old
behavior, examine the parameters GlobalDir and LocalDir.




Timing Methods

There are 6 ways to trigger output from Enzo.


Cycle Based Output

CycleSkipDataDump = N
CycleLastDataDump = W
DataDumpName = data





One can trigger output every N cycles starting with cycle W using
CycleSkipDataDump and CycleLastDataDump. Outputs are put in the
directory DD0000 (or DD0001, etc.) and the basename is determined
by DataDumpName.

CycleSkipDataDump <= 0 means cycle based output is skipped. The
default is 0.

Pitfall 2: CycleLastDataDump defaults to zero and is incremented by
CycleSkipDataDump every time output is done. If you change the
value of CycleSkipDataDump and neglect to change CycleLastDataDump,
Enzo will dump as long as CycleNumber >= CycleSkipDataDump +
CycleLastDataDump. (So if you change CycleSkipDataDump from 0 to 10
from a Redshift dump at n=70, you’ll get an output every timestep
for 7 timesteps.)




Time Based Output

TimeLastDataDump = V
dtDataDump = W





Exactly like Cycle based output, but triggered whenever time >=
TimeLastDataDump + dtDataDump. The same pitfall applies.




Redshift Based Output

CosmologyOutputRedshift[ 0 ] = 12
CosmologyOutputRedshiftName[ 0 ] = Redshift12
RedshiftDumpName             = RedshiftOutput





Outputs at the specified redshift. Any number of these can be
specified.

CosmologyOutputRedshift[ i ] is the only necessary parameter, and
is the ith redshift to output.

Any outputs with CosmologyOutputRedshiftName[ i ] specified has
that name used for the output, and no number is appended. (so if
CosmologyOutputRedshiftName[ 6 ] = BaconHat, the outputs will be
BaconHat, BaconHat.hierarchy, etc.)

If CosmologyOutputRedshiftName[ i ] is omitted, RedshiftDumpName is
used for the basename, and the output number is taken from the
array index. (So CosmologyOutputRedshift[19] = 2.34 and
RedshiftDumpName = MonkeyOnFire, at dump will be made at z=2.34
with files called MonkeyOnFire0019.hierarchy, etc.)




Force Output Now

The following two options are run time driven. These are especially
useful for very deep simulations that spend the majority of their
time on lower levels.  Note that unless you have the parameter
FileDirectedOutput turned on, these will not be available.

To force an output as soon as the simulation finished the next step
on the finest resolution, make a file called outputNow:

touch outputNow





This will remove the file as soon as the output has finished.




Sub Cycle Based Output

To get the simulation to output every 10 subsycles (again at the
finest level of resolution) put the number of subcycles to skip in
a file called subcycleCount:

echo 10 > subcycleCount








Time Based Interpolated Output

Even when you are running simulations with a long dtDataDump, sometimes you may
want to see or analyze the interim datadumps.  Using dtInterpolatedDataDump,
you can control Enzo to check if it should start outputting interpolated data
based on the time passed (dtInterpolatedDataDump < dtDataDump).

dtDataDump = 1e-4
dtInterpolatedDataDump = 1e-5





This is mostly for making movies or looking at the interim data where the
TopGrid dt is too long, and in principle, this output shouldn’t be used for
restart.






Friendly Note on Data Output

Enzo is content to output enough data to fill up a hard drive –
for instance, your home directory. This should be noted before
output parameters are set, particularly the Sub Cycle outputs, as
Enzo has no prohibition against causing problems with quotas and
file system size.
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User Guide

This document provides a brief description of the compilation and
operation of Enzo, a structured Adaptive Mesh Refinement [http://en.wikipedia.org/wiki/Adaptive_mesh_refinement] (SAMR, or
more loosely AMR) code which is primarily intended for use in
astrophysics and cosmology. The User’s Guide is intended to explain
how to compile and run Enzo, the initial conditions generation code
and the various analysis tools bundled with Enzo. The instructions on
actually running the code are not comprehensive in that they are not
machine or platform-specific.  Arguably the most useful and important
piece of this guide is Enzo Parameter List, which contains
descriptions of all of the roughly 300 possible input parameters (as
of September 2008). For more detailed information on the Enzo
algorithms and on running Enzo on different platforms, you should
refer to the Getting Started with Enzo. Detailed information on the
algorithms used in Enzo will be available in the method paper
(unreleased as of September 2008). In the meantime, see the
Enzo Primary References for more concrete Enzo information.

This guide (and Enzo itself) was originally written by Greg
Bryan. Since the original writing of both the simulation code and the
User’s Guide, the maintenance of Enzo and its associated tools and
documentation was for some time largely driven by the Laboratory for
Computational Astrophysics [http://lca.ucsd.edu] at The University
of California, San Diego [http://www.ucsd.edu], but it is now a
fully open source community with developers from Stanford, Columbia,
Princeton, UCSD, University of Colorado, Michigan State, UC Berkeley,
and many other universities.  Your input in improving both the code
and the User’s Guide is appreciated – developement of the code is
driven by working researchers, and we encourage everyone who has made
useful changes to contribute those changes back to the community and
to participate in the collaborative development of the code.  Email
inquiries and comments should be directed to the Enzo Users’ List [http://groups.google.com/group/enzo-users]. Thank you!
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Executables, Arguments, and Outputs

This page is a summary of all of the binaries that are created
after make; make install is run in the Enzo code bundle. They
should be located in the bin directory. Links to the various pages
of the manual that describe a particular binary are also included.


enzo

This is the main simulation code executable. See Running Enzo
for more detailed information.

When an Enzo simulation is run, at every datastep several files are output,
inserted into subdirectories.  The most important of these are the files with
no extension and those ending in .hierarchy, of which there will be one of
each for each datadump.  For more information on the format of Enzo output, see
Enzo Output Formats.

usage: ./enzo.exe [options] param_file
   options are:
   -d(ebug)
   -r(estart)
   -x(extract)
      -l(evel_of_extract) level
   -p(roject_to_plane) dimension
   -P(roject_to_plane version 2) dimension
      -m(smooth projection)
   -o(utput as particle data)
   -g (Write Potential field only)
   -M (Write smoothed DM field only)
   -F(riends-of-friends halo finder only)
   -C(ooling time write only)
   -h(elp)
   -i(nformation output)
   -V (show compiler options and flags)
   -s(tart  index region) dim0 [dim1] [dim2]
   -e(nd    index region) dim0 [dim1] [dim2]
   -b(egin  coordinate region) dim0 [dim1] [dim2]
   -f(inish coordinate region) dim0 [dim1] [dim2]





The -g, -M, and -C flags will read in the dataset given on the command
line and write additional data fields to the same data files.  When
running with these flags (or the -F flag), the -r flag must also be
given so that the code knows to read in a dataset.  For example, to
write out the cooling time to the output DD0001, do the following:

enzo.exe -r -C DD0001/DD0001








inits

This is the initial conditions generator. See Using inits for more
detailed information. Initial conditions with a single initial grid or multiple
nested grids can be created with this executable.  Output file names are
user-specified, but in a standard cosmology simulation with a single initial
grid there should be a file containing baryon density information, another
containing baryon velocity information, and two more files containing particle
position and velocity information. Simulations with multiple grids will have a
set of these files for each level, appended with numbers to make them unique.

usage: inits [options] param_file
   options are:
      -d(ebug)
      -s(ubgrid) param_file








ring

ring must be run on the simulation particle position and velocity
information before a simulation is executed when the Enzo runtime parameter
ParallelParticleIO is set to 1. Running ring generates files called
PPos.nnnn PVel.nnnn where nnnn goes from 0001 to the total number
of processors that are used for the simulation. These files contain
the particle position and velocity information for particles that
belong to each processor individually, and will be read into the
code instead of the monolithic particle position and velocity
files. Note that if ParallelParticleIO is on and ring is NOT run,
the simulation will crash.

usage:  ring [string] <particle position file> <particle velocity file>





[string] can be one of the following: pv, pvm, pvt, or pvmt. p, v,
m and t correspond to position, velocity, mass, and type,
respectively. The most common [string] choice is ‘pv’.
In that case, and if you use the default names for
the particle position and velocity files, your usage will look
like:

ring pv ParticlePositions ParticleVelocities








enzohop

The second (and generally favored) method used for finding density peaks in an
Enzo simulation. More information can be found here. A file called
HopAnalysis.out is output which contains halo position and mass
information.

enzohop [-b #] [-f #] [-t #] [-g] [-d] amr_file
  -b)egin region
  -f)inish region
  -t)hreshold for hop (default 160)
  -g)as particles also used (normally just dm)
  -d)ebug








anyl

anyl is the analysis package written in C, previously known as enzo_anyl.
Although the analysis toolkit for enzo that’s being constantly updated is YT,
anyl has its own value for some users. It creates radial, disk, vertical
profiles for baryon (each species), dark matter, and star particles. Works with
all AMR formats including HDF4 and packed HDF5.

usage: anyl.exe <amr file> <anyl parameter file>
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Running Enzo

Once the code is compiled and a parameter file is prepared,
starting the simulation is easy:

mpirun -np 1 enzo [-d] parameter_file





The syntax of the mpirun varies between mpi implementations. The
example given here comes from a machine using a standard MPI
implementation that is initiated by the ‘mpirun’ command, and implies
the use of a single processors (the argument after the -np flag
indicates the number of processors).

The -d flag triggers a debug option that produces a substantial amount
of output. See Getting Started with Enzo for more detailed information on
running simulations. You may also need to use ring if you are
using parallel I/O.


Restarting

During a run, there are a number of forms of output. The largest
will probably be the output of the full dataset as specified by
parameters such as dtDataDump and the CosmologyOutputRedshift.
Such outputs contain a number of different files (sometimes many files
if there are a large number of grids) and are explained elsewhere.
It is useful to have a fairly large number of such outputs if the
run is a long one, both to provide more information to analyze, but
also in case of an unintended interruption (crash). Fortunately,
any full output can be used to restart the simulation:

mpirun -np 1 enzo [-d] -r output_name








Monitoring information

As the simulation runs, at every top grid timestep, it outputs a
line of information to the ascii file OutputLevelInformation (which
is overwritten on restart). The amount of information on this line
can be quite extensive, but here the format is briefly summarized.
The first number is the problem time, while the next 6 relate to
general information about the entire run. Within these six numbers,
the first is the maximum level currently in use, the second is the
number of grids, the third is a number proportional to the memory
used, the fourth is the mean axis ratio of all grids, and the last
two are reserved for future use. Then, there are three spaces,
and another group of numbers, all providing information about the
first (top grid) level. This pattern of three spaces and six
numbers is repeated for every level.  An example of this file is
provided below.

Cycle 151  Time 20.241365  MaxDepth 4  Grids 412  Memory(MB) 53.3117  Ratio 2.22582
   Level 0  Grids 2  Memory(MB) 13.8452  Coverage 1  Ratio 2  Flagged 0  Active 262144
   Level 1  Grids 304  Memory(MB) 31.4977  Coverage 0.166855  Ratio 2.43768  Flagged 0  Active 349920
   Level 2  Grids 76  Memory(MB) 5.81878  Coverage 0.00329208  Ratio 1.66118  Flagged 0  Active 55232
   Level 3  Grids 22  Memory(MB) 1.74578  Coverage 0.000125825  Ratio 1.63561  Flagged 0  Active 16888
   Level 4  Grids 8  Memory(MB) 0.404286  Coverage 2.5034e-06  Ratio 1.21875  Flagged 0  Active 2688





The information for each level is:


	number of grids on the level

	memory usage (minus overhead).  Actual memory usage is usually a factor of 10 higher.

	the volume fraction of the entire region covered by grids on this level,

	the mean axis ratio of grids on this level

	the fraction of cells on this level which need refinement (unused)

	the number of active cells on this level.






Debugging information

It is often useful to run with the debug flag turned on,
particularly if the code is crashing for unknown reasons.
However, the amount of output is quite
large so it is useful to redirect this to a log file, such as:

mpirun -np 1 enzo -d -r output_name >& log_file





Some modules (the cooling unit is particularly bad for this),
produce their own debugging logs in the form of fort.?? files.
These can be ignored unless problems occur.




Test Problems

There are a number of built-in tests, which can be used to debug the
system or characterize how well it solves a particular problem.  (see
Enzo Test Suite for a complete list.) Note that Enzo can run any
problem after compilation, since no compilation flags affect
simulation parameters.  To run a particular test, cd to the
[browser:public/trunk/doc/examples doc/examples] subdirectory of the
Enzo source distribution (after compiling enzo) and use the following
command-line:

mpirun -np 1 enzo [-d] test_name





The syntax of the mpirun various from mpi implementation. The
example given here comes from the Origin2000 and implies a single
processor (the argument after the -np flag indicates the number of
processors).

The parameter test_name corresponds to the parameter file that
specifies the type of test and the test particulars. This file is
ascii, and can be edited.
It consists of a series of lines (and optional comments) each of
which specifies the value of one parameter. The parameters are
discussed in more detail in Enzo Parameter List.

If you just type enzo without any arguments, or if the number of
arguments is incorrect, the program should respond with a summary
of the command-line usage.

The -d flag turns on a rather verbose debug option.

For example, to run the shock tube test, use:

mpirun -np 1 enzo ShockTube





or

enzo ShockTube





The response should be:

Successfully read in parameter file ShockTube.
Successful completion...





How do you know if the results are correct?  New for v2.0, we have
added more regression tests and answer tests [http://ppcluster.ucsd.edu/lcatest/], using LCAtest.  We hope to
add more answer tests, especially for large production-type
simulations, e.g. a 5123 cosmology simulation.
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Measuring Simulation Progress

Measuring the progress of an Enzo simulation can be tricky as each level of the
hierarchy has its own timestep and a lot of information is printed.  Fortunately,
the Enzo source comes with its own progress meter which provides a great deal of
useful information on the state of a simulation.  The progress meter is called
np and is located in the bin directory of the Enzo source.


Running Enzo with the Progress Meter

To get the most out of the progress meter, simulations should be run with the -d
flag (for debug output) and have both the standard output and standard error piped
into a single file.  Note, running Enzo with -d will not slow down the simulation.
In a bash environment, the standard output and error can be piped into the same
file in the following way:

[mpirun ...] ./enzo.exe -d AMRCosmology.enzo >& estd.out








Using the Progress Meter

To use the progress meter, simply run it from within the simulation directory.

~ ./np -t "AMRCosmology" -l 5
+----------------------------------------- AMRCosmology -----------------------------------------+
| Sat Oct 26 01:20:00 1985                     Status: 30.996% complete.                         |
+------------------- Time ------------------+ +-------------------- Output ----------------------+
|  Initial  |  Current  |   Final   | Units | |      |   Time    | Redshift |  Name  | Completed |
+-----------+-----------+-----------+-------+ +------+-----------+----------+--------+-----------|
| 8.163e-01 | 7.175e+01 | 2.297e+02 | code  | | Last | 7.082e+01 | 1.558275 | DD0014 |  -------  |
| 4.911e+07 | 4.316e+09 | 1.382e+10 | years | | Next | 7.582e+01 | 1.438446 | DD0015 | 18.61270% |
+-------------------------------------------+ +--------------------------------------------------+
+--------------------------- Hierarchy --------------------------+ +--------- Redshift ----------+
| L | Grids |  Volume   |    dt     |  Sub  | Completed | Iter |R| | Initial | Current |  Final  |
+---+-------+-----------+-----------+-------+-----------+------+-+ +---------+---------+---------+
| 0 |     4 | 1.000e+00 | 2.021e+00 | 1.000 | 1.0000000 |  159 | | | 50.0000 | 1.53496 | 0.00000 |
| 1 |    49 | 1.500e-01 | 6.820e-01 | 0.688 | 0.6879505 |   54 | | +-----------------------------+
| 2 |    16 | 4.997e-03 | 2.297e-01 | 0.337 | 0.4641940 |   67 | |
| 3 |     9 | 1.779e-04 | 9.501e-02 | 1.000 | 0.4641943 |  150 | |
| 4 |     4 | 3.755e-06 | 9.501e-02 | 1.000 | 0.4641941 |  271 | |
| 5 |     1 | 2.012e-07 | 2.852e-02 | 0.919 | 0.4603860 |  457 |<|
+----------------------------------------------------------------+
+---------------------------------------------
| TransferSubgridParticles[5]: Moved 0 particles, 0 stars.
| DetermineSGSize: MaxSubgridSize = 2000, MinSubgridEdge = 4, ncells = 216
| RebuildHierarchy[5]: Flagged 0/1 grids. 0 flagged cells
| Level[5]: dt = 0.0285228  0.0285228 (0.0873183/0.0950141)
| RebuildHierarchy: level = 5
+---------------------------------------------





The progress meter will continue to update automatically as more information is
written to the log file.




Progress Meter Output

The progress meter has four section: time, output, hierarchy, and redshift
(if a cosmology simulation.)  The time section gives the initial, current, and
final time in both code units and years.  The redshift section gives the initial,
current, and final redshift of the simulation.  The output section gives the time,
redshift, and names of the previous and next data dump as well as the percentage
that the simulation is to reaching the next output.  The hierarchy section
displays, for each level of the hierarchy, the number of grids, the total volume
of grids, the current timestep, the completion fraction of the level above, the
completion fraction of the root grid timestep, and the number of iterations taken.
The far right column shows what level is being computed and the current status.
See below for an explanation of the symbols.  If the -l flag is given, an
additional section will appear with the last lines written to the log file.




Additional Options

Additional options can be seen by running the progress meter with the -h flag.

~ ./np -h
np:
        -h: print this help output.
        -d <directory>: simulation directory (default: .).
        -hf <filename>: hierarchy file (default: OutputLevelInformation.out).
        -l <number of output lines>: print enzo standard out lines (default: 0).
        -of <filename>: enzo standard out file (default: estd.out).
        -ol <filename>: enzo output log file (default: OutputLog).
        -pf <filename>: parameter file (default: amr.out).
        -t <title>: title of simulation.
        -w <seconds>: change number of seconds between output (default: 1).
Status:
        E: Evolve Level
        R: Rebuild Hierarchy
        W: Writing Data
        .: Evolve Level Complete











          

      

      

    


    
         Copyright 2012, Enzo Developers.
      Last updated on Mar 09, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Enzo 2.5 documentation 

          	User Guide 
 
      

    


    
      
          
            
  
Running Enzo with CUDA

Enzo contains CUDA version of PPM and MHD solver. Supported parameters include



	PPM: TwoShock, HLL, HLLC, PPMFlatteningParameter, PPMSteepeningParameter, DualEnergyFormalism, RiemannSolverFallback

	MHD: HLL-PLM

	Gravity

	Color fields: chemistry, etc

	Driving field

	Comoving coordinates

	EOSType: 0







How to compile with CUDA

In order to make Enzo compatible with CUDA, a few changes need to be
made in the settings.

Currently Enzo CUDA is only compatible with 32-bit precision.  In order to
correctly set this, make sure that in src/enzo/ you run the following
configuration commands:


	::

	make cuda-yes
make integers-32
make precision-32
make particles-32
make particle-id-32
make inits-32
make io-32



Then locate your machine specific Makefile, e.g. Make.mach.mymach, and
then set the following variables:

MACH_OPT_CUDA = -arch=sm_20 -03
MACH_LIBS_CUDA = -L/your/cuda/install/dir/lib64 -lcudart





If using the Kepler K20 GPU, then

MACH_OPT_CUDA = -arch=sm_35 -03





Last thing to note is that the CUDA solver is single precision only.
Check to make sure that all the precision flags are set correctly.
For example,

MACH_FFLAGS_INTEGER_32 =
MACH_FFLAGS_INTEGER_64 = -i8
MACH_FFLAGS_REAL_32 =
MACH_FFLAGS_REAL_64 = -r8








How to run with CUDA

The only thing to do is to set UseCUDA=1 in whichever parameter
file. That’s all!

Be sure that each node has at least 1 NVIDIA GPU. Also note that
each GPU can be running multiple MPI processes, the
performance will typically increase with mulitple MPI processes per GPU.
So it’s recommended to set the number of MPI processes per node to be the number
of CPU cores to fully use both the CPU and GPU resources.
Furthermore, on Kepler K20 GPU, it’s recommended to turn on CUDA MPS (Multi-Process Service),
which enables concurrent running of multiple MPI processes on the GPU.
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Running Enzo with Grackle

The Grackle is an external chemistry and cooling library originally derived from
Enzo’s MultiSpecies chemistry and Cloudy cooling modules.  The non-equilibrium
primordial chemistry and cooling functionality is essentially identical to the
MultiSpecies network.  However, significant updates have been made to the treatment
of metals and UV backgrounds that may make using the Grackle a more attactive option,
such as:


	UV backgrounds are treated via interpolating from data tables loaded from disk rather
than piece-wise polynomial functions, making it somewhat easier to add support for
new background models.



	UV background and cooling data are contained within the same input file and are
more consistent than the currently available Cloudy cooling data and Enzo UV
background models.  Currently, the Grackle distribution comes with UV background
and cooling data for two different models:



	Faucher-Giguere et al. (2009) [http://adsabs.harvard.edu/abs/2009ApJ...703.1416F].

	Haardt & Madau (2012) [http://adsabs.harvard.edu/abs/2012ApJ...746..125H].








	Unlike the original Cloudy cooling which required separate input files for cooling
before the UV background turns on and after, all data is contained in a single
table.  This means one no longer has to run with one input file to the redshift
where the UV background starts, stop the simulation, and restart with another input
file.



	Also unlike the original Cloudy cooling module, Grackle supports the option to also
solve the primordial cooling via interpolation from a table.  Thus, one is no longer
required to run with the MultiSpecies functionality in order to calculate the
primordial component.  This simplified method is somewhat faster and requires fewer
baryon fields to be stored, lowering the ram and disk footprint.





For more information on the Grackle library, see the
Grackle documentation [https://grackle.readthedocs.org/].


Obtaining and Building the Grackle

See the Grackle documentation [https://grackle.readthedocs.org/] for complete
instruction on how to obtain, compile, and install the Grackle library.




Compiling Enzo with Grackle

In order to compile Enzo with support for Grackle, the following lines need to be added
to your machine make file in the appropriate places:

LOCAL_GRACKLE_INSTALL = PATH/TO/GRACKLE
LOCAL_INCLUDES_GRACKLE = -I$(LOCAL_GRACKLE_INSTALL)/include
MACH_INCLUDES_GRACKLE = $(LOCAL_INCLUDES_GRACKLE)
LOCAL_LIBS_GRACKLE = -L$(LOCAL_GRACKLE_INSTALL)/lib -lgrackle
MACH_LIBS_GRACKLE = $(LOCAL_LIBS_GRACKLE)





See the example make file, Make.mach.unkown, in the Enzo source for an example.

To configuration Enzo to build with Grackle support, do the following before typing
“make”:

make grackle-yes








Running with the Grackle

Grackle parameters should be given in the same parameter file as the rest of the Enzo
parameters.  Since the Grackle is based on Enzo’s MultiSpecies, many of the parameter
names are the same.  For a full list of Grackle parameters, see
here.
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Enzo Test Suite

The Enzo test suite is a set of tools whose purpose is to perform
regression tests on the Enzo codebase, in order to help developers
discover bugs that they have introduced, to verify that the code is
producing correct results on new computer systems and/or compilers,
and, more generally, to demonstrate that Enzo is behaving as expected
under a wide variety of conditions.


What’s in the test suite?

The suite is composed of a large number of individual test problems
that are designed to span the range of physics and dimensionalities
that are accessible using the Enzo code, both separately and in
various permutations.  Tests can be selected based on a variety of
criteria, including (but not limited to) the physics included, the
estimated runtime of the test, and the dimensionality.  The
testing suite runs enzo on each selected test problem, produces
a series of outputs, and then uses yt to process these outputs
in a variety of different ways (making projections, looking at
fields, etc.).  The results of these yt analyses are then compared
against similarly generated results from an earlier “good” version
of the enzo code run on the same problems.  In test problems where
we have them, analytical solutions are compared against the test
results (e.g. shocktubes).  Lastly, a summary of these test results
are returned to the user for interpretation.

One can run individual tests or groups of tests using the various run time
flags.  For convenience, three pre-created, overlapping sets of tests are
provided.  For each set of tests, one must generate their own standard locally
against which she can compare different builds of the code.

1.  The “quick suite” (--suite=quick).  This is composed of
small calculations that test critical physics packages both
alone and in combination.  The intent of this package is to be run
automatically and relatively frequently (multiple times a day) on
a remote server to ensure that bugs have not been introduced during the code
development process.  All runs in the quick suite use no more than
a single processor.  The total run time should be about 15 minutes
on the default lowest level of optimization..

2.  The “push suite” (--suite=push).  This is a slightly
large set of tests, encompassing all of the quick suite and
some additional larger simulations that test a wider variety of physics
modules.  The intent of this package is to provide a thorough validation
of the code prior to changes being pushed to the main repository.  The
total run time is roughly 60 minutes for default optimization, and
all simulations use only a single processor.

3.  The “full suite” (--suite=full).  This encompasses essentially
all of test simulations contained within the run directory.  This suite
provides the most rigorous possible validation of the code in many different
situations, and is intended to be run prior to major changes being pushed
to the stable branch of the code.  A small number of simulations in the full
suite are designed to be run on 2 processors and will take multiple hours to
complete.  The total run time is roughly 60 hours for the default lowest
level of optimization.




How to run the test suite

1.  Compile Enzo. If you have already built enzo, you can skip this step and
the test will use your existing enzo executable.  To compile enzo with the
standard settings, complete these commands:

$ cd <enzo_root>/src/enzo
$ make default
$ make clean
$ make





Note that you need not copy the resulting enzo executable to your path,
since the enzo.exe will be symbolically linked from the src/enzo directory
into each test problem directory before tests are run.

2.  Get the correct yt version The enzo tests are generated and compared
using the yt analysis suite.  You must be using yt 2.6.3 in order for the test
suite to work.  The test suite has not yet been updated to work with yt 3.0 and
newer releases. If you do not yet have yt, visit http://yt-project.org/#getyt
for installation instructions.  If you already have yt and yt is in your path,
make sure you’re using yt 2.6.3 by running the following commands:

$ cd /path/to/yt_mercurial_repository
$ hg update yt-2.x
$ python setup.py develop





3. Generate answers to test with. Run the test suite with these flags within
the run/ subdirectory in the enzo source hierarchy:

$ cd <enzo_root>/run
$ ./test_runner.py --suite=quick -o <output_dir> --answer-store
                    --answer-name=<test_name> --local





Note that we’re creating test answers in this example with the quick suite, but
we could just as well create a reference from any number of test problems using
other test problem flags.

Here, we are storing the results from our tests locally in a file called
<test_name> which will now reside inside of the <output_dir>.  If you want
to, you can leave off --answer-name and get a sensible default.

$ ls <output_dir>
fe7d4e298cb2    <test_name>

$ ls <output_dir>/<test_name>
<test_name>.db





When we inspect this directory, we now see that in addition to the subdirectory
containing the simulation results, we also have a <test_name> subdirectory which
contains python-readable shelve files, in this case a dbm file.  These are the
files which actually contain the reference standard.  You may have a different
set of files or extensions depending on which OS you are using, but don’t worry
Python can read this no problem.  Congratulations, you just produced your own
reference standard.  Feel free to test against this reference standard or tar
and gzip it up and send it to another machine for testing.

4.  Run the test suite using your local answers. The testing suite operates
by running a series of enzo test files throughout the run subdirectory.
Note that if you want to test a specific enzo changeset, you must update to it
and recompile enzo. You can initiate the quicksuite test simulations and their
comparison against your locally generated answers by running the following
commands:

$ cd <enzo_root>/run
$ ./test_runner.py --suite=quick -o <output_dir> --answer-name=<test_name>
                   --local --clobber





In this command, --output-dir=<output_dir> instructs the test runner to
output its results to a user-specified directory (preferably outside of the enzo
file hierarchy).  Make sure this directory is created before you call
test_runner.py, or it will fail.  The default behavior is to use the quick
suite, but you can specify any set of tests using the --suite or --name
flags. We are comparing the simulation results against a local (--local)
reference standard which is named <test_name> also located in the
<output_dir> directory.  Note, we included the --clobber flag to rerun
any simulations that may have been present in the <output_dir> under the
existing enzo version’s files, since the default behavior is to not rerun
simulations if their output files are already present.  Because we didn’t set
the --answer-store flag, the default behavior is to compare against the
<test_name>.

5.  Review the results. While the test_runner is executing, you should see
the results coming up at the terminal in real time, but you can review these
results in a file output at the end of the run.  The test_runner creates a
subdirectory in the output directory you provided it, as shown in the example
below.

$ ls <output_dir>
fe7d4e298cb2

$ ls <output_dir>/fe7d4e298cb2
Cooling        GravitySolver    MHD                    test_results.txt
Cosmology      Hydro            RadiationTransport     version.txt





The name of this directory will be the unique hash of the version of
enzo you chose to run with the testing suite.  In this case it is
fe7d4298cb2, but yours will likely be different, but equally
unintelligible.  You can specify an optional additional suffix to be
appended to this directory name using --run-suffix=<suffix>. This
may be useful to distinguish multiple runs of a given version of enzo,
for example with different levels of optimization. Within this
directory are all of the test problems that you ran along with their
simulation outputs, organized based on test type (e.g.  Cooling,
AMR, Hydro, etc.)  Additionally, you should see a file called
test_results.txt, which contains a summary of the test runs and
which ones failed and why.




My tests are failing and I don’t know why

A variety of things cause tests to fail: differences in compiler,
optimization level, operating system, MPI submission method,
and of course, your modifications to the code.  Go through your
test_results.txt file for more information about which tests
failed and why.  You could try playing with the relative tolerance
for error using the --tolerance flag as described in the flags
section.  For more information regarding the failures of a specific
test, examine the estd.out file in that test problem’s subdirectory
within the <output_dir> directory structure, as it contains the
STDERR and STDOUT for that test simulation.

If you are receiving EnzoTestOutputFileNonExistent errors, it
means that your simulation is not completing.  This may be due to
the fact that you are trying to run enzo with MPI which your
system doesn’t allow you to initiate from the command line.
(e.g. it expects you to submit mpirun jobs to the queue).
You can solve this problem by recompiling your enzo executable with
MPI turned off (i.e. make use-mpi-no), and then just pass the
local_nompi machine flag (i.e. -m local_nompi) to your
test_runner.py call to run the executable directly without MPI support.
Currently, only a few tests use multiple cores, so this is not a
problem in the quick or push suites.

If you see a lot of YTNoOldAnswer errors, it may mean that your simulation
is running to a different output than what was reached for your locally
generated answers does, and the test suite is trying to compare your last output
file against a non-existent file in the answers.  Look carefully at the
results of your simulation for this test problem using the provided python file
to determine what is happening.  Or it may simply mean that you specified the
wrong answer name.




Descriptions of all the testing suite flags

You can type ./test_runner.py --help to get a quick summary of all
of the command line options for the testing suite.  Here is a more
thorough explanation of each.

General flags


	-h, --help

	list all of the flags and their argument types (e.g. int, str, etc.)

	-o str, --output-dir=str default: None

	Where to output the simulation and results file hierarchy.  Recommended
to specify outside of the enzo source hierarchy.

	-m str, --machine=str default: local

	Specify the machine on which you’re running your tests.  This loads
up a machine-specific method for running your tests.  For instance,
it might load qsub or mpirun in order to start the enzo executable
for the individual test simulations.  You can only use machine
names of machines which have a corresponding machine file in the
run/run_templates subdirectory (e.g. nics-kraken). N.B.
the default, local, will attempt to run the test simulations using
mpirun, so if you are required to queue on a machine to execute
mpirun, test_runner.py will silently fail before finishing your
simulation.  You can avoid this behavior by compiling enzo without
MPI and then setting the machine flag to local_nompi.

	--repo=str default: current directory

	Path to repository being tested.

	--interleave default: False

	Interleaves preparation, running, and testing of each
individual test problem as opposed to default batch
behavior.

	--clobber default: False

	Rerun enzo on test problems which already have
results in the destination directory

	--tolerance=int default: see --strict

	Sets the tolerance of the relative error in the
comparison tests in powers of 10.

Ex: Setting --tolerance=3 means that test results
are compared against the standard and fail if
they are off by more than 1e-3 in relative error.



	--bitwise default: see --strict

	Declares whether or not bitwise comparison tests
are included to assure that the values in output
fields exactly match those in the reference standard.

	--strict=[high, medium, low] default: low

	This flag automatically sets the --tolerance
and --bitwise flags to some arbitrary level of
strictness for the tests.  If one sets --bitwise
or --tolerance explicitly, they trump the value
set by --strict.  When testing enzo general
functionality after an installation, --strict=low
is recommended, whereas --strict=high is suggested
when testing modified code against a local reference
standard.

high: tolerance = 13, bitwise = True
medium: tolerance = 6, bitwise = False
low: tolerance = 3, bitwise = False



	--sim-only default: False

	Only run simulations, do not store the tests or compare them against a
standard.

	--test-only default: False

	Only perform tests on existing simulation outputs, do not rerun the simulations.

	--time-multiplier=int default: 1

	Multiply simulation time limit by this factor.  Useful if you’re on a slow
machine or you cannot finish the specified tests in their allocated time.

	--run-suffix=str default: None

	An optional suffix to append to the test run directory. Useful
to distinguish multiple runs of a given changeset.

	-v, --verbose default: False

	Verbose output in the testing sequence.  Very good for tracking down
specific test failures.

	--pdb default: False

	When a test fails a pdb session is triggered.  Allows interactive inspection
of failed test data.



Flags for storing, comparing against different standards


	--answer-store default: False

	Should we store the results as a reference or just compare
against an existing reference?

	--answer-name=str default: latest gold standard

	The name of the file where we will store our reference results,
or if --answer-store is false, the name of the reference against
which we will compare our results.

	--local default: False

	Store/Compare the reference standard locally (i.e. not on the cloud)



Bisection flags


	-b, --bisect default: False

	Run bisection on test. Requires revisions --good and
--bad.  Best if --repo is different from location of
test_runner.py runs  --problematic suite.

	--good=str default: None

	For bisection, most recent good revision

	--bad=str default: None

	For bisection, most recent bad revision

	-j int, --jcompile=int default: 1

	number of processors with which to compile when running bisect

	--changeset=str default: latest

	Changeset to use in simulation repo.  If supplied,
make clean && make is also run



Flags not used


	--with-answer-testing default: False

	DO NOT USE.  This flag is used in the internal yt answer testing
and has no purpose in the enzo testing infrastructure.

	--answer-big-data default: False

	DO NOT USE.  This flag is used in the internal yt answer testing
and has no purpose in the enzo testing infrastructure.



Flags for specifying test problems

These are the various means of specifying which test problems you want
to include in a particular run of the testing suite.


	--suite=[quick, push, full] default: None

	A precompiled collection of several different test problems.
quick: 37 tests in ~15 minutes, push: 48 tests in ~30 minutes,
full: 96 tests in ~60 hours.



--answer_testing_script=str default: None


	--AMR=bool default: False

	Test problems which include AMR

	--author=str default: None

	Test problems authored by a specific person

	--chemistry=bool default: False

	Test problems which include chemistry

	--cooling=bool default: False

	Test problems which include cooling

	--cosmology=bool default: False

	Test problems which include cosmology

	--dimensionality=[1, 2, 3]

	Test problems in a particular dimension

	--gravity=bool default: False

	Test problems which include gravity

	--hydro=bool default: False

	Test problems which include hydro

	--max_time_minutes=float

	Test problems which finish under a certain time limit

	--mhd=bool default: False

	Test problems which include MHD

	--name=str default: None

	A test problem specified by name

	--nprocs=int default: 1

	Test problems which use a certain number of processors

	--problematic=bool default: False

	Test problems which are deemed problematic

	--radiation=[None, fld, ray] default: None

	Test problems which include radiation

	--runtime=[short, medium, long] default: None

	Test problems which are deemed to have a certain predicted runtime






How to track down which changeset caused your test failure

In order to identify changesets that caused problems, we have
provided the --bisect flag.  This runs hg bisect on revisions
between those which are marked as –good and –bad.

hg bisect automatically manipulates the repository as it runs its
course, updating it to various past versions of the code and
rebuilding.  In order to keep the tests that get run consistent through
the course of the bisection, we recommend having two separate enzo
installations, so that the specified repository (using --repo) where
this rebuilding occurs remains distinct from the repository where the
testing is run.

To minimize the number of tests run, bisection is only run on tests
for which problematic=True.  This must be set by hand by the user
before running bisect.  It is best that this is a single test problem,
though if multiple tests match that flag, failures are combined with “or”

An example of using this method is as follows:

$ echo "problematic = True" >> Cosmology/Hydro/AdiabaticExpansion/AdiabaticExpansion.enzotest
$ ./test_runner.py  --output-dir=/scratch/dcollins/TESTS --repo=/SOMEWHERE_ELSE
                    --answer-compare-name=$mylar/ac7a5dacd12b --bisect --good=ac7a5dacd12b
                    --bad=30cb5ff3c074 -j 8





To run preliminary tests before bisection, we have also supplied the
--changeset flag.  If supplied, --repo is updated to
--changeset and compiled.  Compile errors cause test_runner.py
to return that error, otherwise the tests/bisector is run.




How to add a new test to the library

It is hoped that any newly-created or revised physics module will be
accompanied by one or more test problems, which will ensure the
continued correctness of the code.  This sub-section explains the
structure of the test problem system as well as how to add a new test
problem to the library.

Test problems are contained within the run/ directory in the
Enzo repository.  This subdirectory contains a tree of directories
where test problems are arranged by the primary physics used in that
problem (e.g., Cooling, Hydro, MHD).  These directories may be further
broken down into sub-directories (Hydro is broken into Hydro-1D,
Hydro-2D, and Hydro-3D), and finally into individual directories
containing single problems.  A given directory contains, at minimum,
the Enzo parameter file (having extension .enzo, described in
detail elsewhere in the manual) and the Enzo test suite parameter file
(with extension .enzotest).  The latter contains a set of
parameters that specify the properties of the test.  Consider the test
suite parameter file for InteractingBlastWaves, which can be found in the
run/Hydro/Hydro-1D/InteractingBlastWaves directory:

name = 'InteractingBlastWaves'
answer_testing_script = None
nprocs = 1
runtime = 'short'
hydro = True
gravity = False
AMR = True
dimensionality = 1
max_time_minutes = 1
fullsuite = True
pushsuite = True
quicksuite = True





This allows the user to specify the dimensionality, physics used, the
runtime (both in terms of ‘short’, ‘medium’, and ‘long’ calculations,
and also in terms of an actual wall clock time).  A general rule for
choosing the runtime value is ‘short’ for runs taking less than 5 minutes,
‘medium’ for run taking between 5 and 30 minutes, and ‘long’ for runs taking
more than 30 minutes.  If the test problem runs successfully in any amount
of time, it should be in the full suite, selected by setting
fullsuite=True.  If the test runs in a time that falls under ‘medium’
or ‘short’, it can be added to the push suite (pushsuite=True).  If
the test is ‘short’ and critical to testing the functionality of the code,
add it to the quick suite (quicksuite=True).

Once you have created a new problem type in Enzo and thoroughly
documented the parameters in the Enzo parameter list, you should
follow these steps to add it as a test problem:


	Create a fork of Enzo.



2.  Create a new subdirectory in the appropriate place in the
run/ directory.  If your test problem uses multiple pieces of
physics, put it under the most relevant one.

3.  Add an Enzo parameter file, ending in the extension .enzo,
for your test problem to that subdirectory.

4.  Add an Enzo test suite parameter file, ending in the extension
.enzotest.  In that file, add any relevant parameters as described
above.

5.  By default, the final output of any test problem will be tested by
comparing the min, max, and mean of a set of fields.  If you want to
have additional tests performed, create a script in the problem type
directory and set the answer_testing_script parameter in the
.enzotest file to point to your test script.  For an example of
writing custom tests, see
run/Hydro/Hydro-3D/RotatingCylinder/test_rotating_cylinder.py.

6.  Submit a Pull Request with your changes and indicate that you have
created a new test to be added to the testing suites.

Congratulations, you’ve created a new test problem!




What to do if you fix a bug in Enzo

It’s inevitable that bugs will be found in Enzo, and that some of
those bugs will affect the actual simulation results (and thus the
test problems used in the problem suite).  Here is the procedure for
doing so:

1.  Run the “push suite” of test problems (--pushsuite=True)
for your newly-revised version of Enzo, and determine which test
problems now fail.

2.  Visually inspect the failed solutions, to ensure that your new
version is actually producing the correct results!

3.  Email the enzo-developers mailing list at
enzo-dev@googlegroups.com to explain your bug fix, and to show the
results of the now-failing test problems.


	Create a pull request for your fix.
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Creating Cosmological Initial Conditions

There are two mechanisms for creating cosmological initial conditions with
Enzo.  The original mechanism, inits, has long been distributed with Enzo.
It is exclusively serial.  We also now distribute mpgrafic with
modifications to support Enzo data formats.


Using inits

The inits program uses one or more ASCII input files to set
parameters, including the details of the power spectrum, the grid
size, and output file names. Each line of the parameter file is
interpreted independently and can contain only a single parameter.
Parameters are specified in the form:

ParameterName = VALUE





Spaces are ignored, and a parameter statement must be contained on
a single line. Lines which begin with the pound symbol (#) are
assumed to be comments and ignored.

First, set the parameters in the file. There are a large number of
parameters, but many don’t need to be set since reasonable default
values are provided. Modifying a provided example (see
Sample inits and Enzo parameter files) is probably the easiest route, but for
reference there is a list of the parameters, their meanings, and their
default values.

Generating a single grid initialization (for simple Enzo runs) is
relatively straightforward. Generating a multi-grid initialization for
Enzo is somewhat more complicated, and we only sketch the full
procedure here.


Single Grid Initialization

To run a single grid initialization, you must set at least the
following parameters: Rank, GridDims, ParticleDims, as well as the
appropriate Cosmology and Power Spectrum parameters. A sample
parameter file is available, which sets up a small, single grid
cosmology simulation (that is, single grid for the initial
conditions, once Enzo is used, additional grids will be created).

After creating or modifying a parameter file, and compiling inits,
run the code with:

inits [-d] parameter_file





Where parameter_file is the name of your modified parameter file
(the -d turns on a debug option). This will produce a number of HDF
files containing the initial grids and particles, which are in the
correct units for use in Enzo.




Multiple-grid Initialization


New in version 2.1.



The multi-grid (or nested) initialization can be used to refine in a
specific region, such as the Lagrangian sphere of a halo.  We assume
that you have first run a single-grid simulation and identified a
region out of which a halo will form and can put this in the form of
the left and right corners of a box which describes the region.  Then
you add the following parameters to the single-grid initialization
code:

MaximumInitialRefinementLevel = 2
RefineRegionLeftEdge          = 0.15523 0.14551 0.30074
RefineRegionRightEdge         = 0.38523 0.37551 0.53074
NewCenterFloat                = 0.270230055 0.260508984 0.415739357
AutomaticSubgridBuffer        = 4





MaximumInitialRefinementLevel indicates how many extra levels you want
to generate (in this case two additional levels, or 3 in total,
including the root grid).  The next two parameters
(RefineRegionLeftEdge and RefineRegionRightEdge) describe the region
to be refined.  The fourth (optional) parameter re-centers the grid on
the halo to be resimulated.  The fifth parameter (AutomaticSubgridBuffer)
indicates how many course cells should be added around each refined
region.

Once you have added these parameters, run inits once on the new
parameter file in the standard way:

inits [-d] MultiGridParameterFile





It will give you a progress report as it runs (note
that if MaximumInitialRefinementLevel is large, this can take a long
time), and generate all of the necessary files (e.g.  GridDensity.0,
GridDensity.1, etc.).

It will also generate a file called EnzoMultigridParameters which you
can then copy directly into the enzo parameter file, and it specifies
the positions of the new grids.  You will still need to set a few
other parameters in the enzo parameter file, including
RefineRegionLeftEdge and RefineRegionRightEdge so that it only refines
in the specified region (typically this should match the most refined
initial grid).  Also set the MaximumRefinementLevel parameter and the
parameter controlling the density to be refined
(MinimumOverDensityForRefinement – this also applies to the root
grid, so it needs to be divided by 8^l where l is the value of
MaximumInitialRefinementLevel).

Note that it is also possible to generate each level of initial
conditions manually.  This should not really be necessary, but a rough
guideline is given here.  To do this, prepare multiple parameter file
describing the individual parameter regions, and then top grid can be
generated with:

inits [-d] -s SubGridParameterFile TopGridParameterFile





The -s flag provides the name of the sub-grid parameter file, which
is required by inits so that the particles are not replicated in
the sub-grid region. The sub-grids are made with the usual command
line:

inits [-d] SubGridParameterFile





!Subgrids with MaxDims of 512 or larger will take some time and
require a fair amount of memory since the entire region is
generated and then the desired section extracted.




Inits Parameter List


Cosmology Parameters


	CosmologyOmegaMatterNow

	This is the contribution of all non-relativistic matter (including
HDM) to the energy density at the current epoch (z=0), relative to
the value required to marginally close the universe. It includes
dark and baryonic matter. Default: 1.0

	CosmologyOmegaLambdaNow

	This is the contribution of the cosmological constant to the energy
density at the current epoch, in the same units as above. Default:
0.0

	CosmologyOmegaWDMNow

	This is the contribution due to warm dark matter alone. Ignored
unless PowerSpectrumType = 13 or 14. Default: 0.0

	CosmologyOmegaHDMNow

	This is the contribution due to hot dark matter alone. Default: 0.0

	CosmologyOmegaBaryonNow

	The baryonic contribution alone. Default: 0.06

	CosmologyComovingBoxSize

	The size of the volume to be simulated in Mpc/h (at z=0). Default:
64.0

	CosmologyHubbleConstantNow

	The Hubble constant at z=0, in units of 100 km/s/Mpc. Default: 0.5

	CosmologyInitialRedshift

	The redshift for which the initial conditions are to be generated.
Default: 20.0






Power Spectrum Parameters


	PowerSpectrumType

	This integer parameter indicates the routine to be used for
generating the power spectrum. Default: 1 The following are
currently available:


	1 - CDM approximation from BBKS (Bardeen et al 1986) as modified
by Peacock and Dodds (1994), to include, very roughly, the effect
of baryons. This should not be used for high baryon universes or
for simulations in which precision in the PS is important.

	2 - CHDM approximate PS from Ma (1996). Roughly good for hot
fractions from 0.05 to 0.3.

	3 - Power-law (scale-free) spectra.

	4 - Reads in a power-spectrum from a file (not working).

	5 - CHDM approximate PS from Ma (1996), modified for 2 equal
mass neutrinos.

	6 - A CDM-like Power spectrum with a shape parameter (Gamma),
that is specified by the parameter PowerSpectrumGamma.

	11 - The Eisenstein and Hu fitting functions for low and
moderate baryon fraction, including the case of one massive
neutrino.

	12 - The Eisenstein and Hu fitting functions for low and
moderate baryon fraction, for the case of two massive neutrinos.

	13 - A Warm Dark Matter (WDM) power spectrum based on the
formulae of Bode et al. (2001 ApJ 556, 93). The WDM equivalent of
the Eisenstein & Hu fitting function with one massive neutrino (so
a WDM version of #11).

	14 - A Warm Dark Matter (WDM) power spectrum based on the
formulae of Bode et al. (2001 ApJ 556, 93). The WDM equivalent of
the CDM BBKS approximation of Bardeen et al 1986 (the WDM version
of #1).

	20 - A transfer function from CMBFast is input for this option,
based on the filenames described below.





	PowerSpectrumSigma8

	The amplitude of the linear power spectrum at z=0 as specified by
the rms amplitude of mass-fluctuations in a top-hat sphere of
radius 8 Mpc/h. Default: 0.6

	PowerSpectrumPrimordialIndex

	This is the index of the mass power spectrum before modification by
the transfer function. A value of 1 corresponds to the scale-free
primordial spectrum. Default: 1.0.

	PowerSpectrumRandomSeed

	This is the initial seed for all random number generation, which
should be negative. The random number generator (Numerical Recipes
RAN3) is machine-independent, so the same seed will produce the
same results (with other parameters unchanged). Note also that
because the spectrum is sampled strictly in order of increasing
k-amplitude, the large-scale power will be the same even if you
increase or decrease the grid size. Default: -123456789

	PowerSpectrumkcutoff

	The spectrum is set to zero above this wavenumber (i.e. smaller
scales are set to zero), which is in units of 1/Mpc. It only works
for power spectrum types 1-6. A value of 0 means no cutoff.
Default: 0.0

	PowerSpectrumkmin/kmax

	These two parameters control the range of the internal lookup table
in wavenumber (units 1/Mpc). Reasonably sized grids will not
require changes in these parameters. Defaults: kmin = 1e-3, kmax =
1e+4.

	PowerSpectrumNumberOfkPoints

	This sets the number of points in the PS look-up table that is
generated for efficiency purposes. It should not require changing.
Default: 10000.

	PowerSpectrumFileNameRedshiftZero

	For input power spectra, such as those from CMBFAST, two transfer
functions are required: one at z=0 to fix the amplitude (via
Sigma8) and the other at the initial redshift to give the shape and
amplitude relative to z=0. No default.

	PowerSpectrumFileNameInitialRedshift

	see above.

	PowerSpectrumGamma

	The shape parameter (Omega*h); ignored unless PowerSpectrumType =
6.

	PowerSpectrumWDMParticleMass

	The mass of the dark matter particle in KeV for the Bode et al.
warm dark matter (WDM) case. Ignored unless PowerSpectrumType = 13
or 14. Default: 1.0.

	PowerSpectrumWDMDegreesOfFreedom

	The number of degrees of freedom of the warm dark matter particles
for the Bode et al. warm dark matter model. Ignored unless
PowerSpectrumType = 13 or 14. Default: 1.5.

	PowerSpectrumGamma

	The shape parameter (Omega*h); ignored unless PowerSpectrumType =
6.






Grid Parameters: Basic


	Rank

	Dimensionality of the problem, 1 to 3 (warning: not recently tested
for Rank !=2). Default: 3

	GridDims

	This sets the actual dimensions of the baryon grid that is to be
created (and so it may be smaller than MaxDims in some cases).
Example: 64 64 64 No default.

	ParticleDims

	Dimensions of the particle grid that is to be created. No default.

	InitializeGrids

	Flag indicating if the baryon grids should be produced (set to 0 if
inits is being run to generate particles only). Default: 1

	InitializeParticles

	Flag indicating if the particles should be produced (set to 0 if
inits is being run to generate baryons only). Default: 1

	ParticlePositionName

	This is the name of the particle position output file. This HDF
file contains one to three Scientific Data Sets (SDS), one for
dimensional component. Default: ParticlePositions

	ParticleVelocityName

	The particle velocity file name, which must(!) be different from
the one above, otherwise the order of the SDS’s will be incorrect.
Default: ParticleVelocities

	ParticleMassName

	This is the name of the particle mass file, which is generally not
needed (enzo generates its own masses if not provided). Default:
None

	GridDensityName

	The name of the HDF file which contains the grid density SDS. Default:
GridDensity

	GridVelocityName

	The name of the HDF file which contains the SDS’s for the baryonic
velocity (may be the same as GridDensityName). Default:
GridVelocity






Grid Parameters: Advanced


	MaximumInitialRefinementLevel

	Used for multi-grid (nested) initial code generation.  This
parameter speciesi the level (0-based) that the initial conditions
should be generated to.  So, for example, setting it to 1
generates the top grid and one additional level of refinement.
Note that the additional levels are nested, keeping at least one
coarse cell between the edge of a coarse grid and its refined grid.
Default: 0

	RefineRegionLeftEdge, RefineRegionRightEdge

	Species the left and right corners of the region that should be
refined using the AutomaticSubgridGeneration method (see above
parameter).  Default: 0 0 0 - 1 1 1

	NewCenterFloat

	Indicates that the final grid should be recenter so that this point
is the new center (0.5 0.5 0.5) of the grid.

	AutomaticSubgridBuffer

	For multi-grid (nested) initial code generation (with the above
parameters).  This parameter controls how many coarse cells are
added around each refined region as buffer zones.  The value
of 1 is probably ok, but larger values (4?) are probably safer.
Default: 1

	MaxDims

	All dimensions are specified as one to three numbers deliminated by
spaces (and for those familiar with the KRONOS or ZEUS method of
specifying dimensions, the ones here do not include ghost zones).
An example is: 64 64 64. MaxDims are the dimensions of the
conceptual high-resolution grid that covers the entire
computational domain. For a single-grid initialization this is just
the dimension of the grid (or of the particle grid if there are
more particles than grid points). For multi-grid initializations,
this is the dimensions of the grid that would cover the region at
the highest resolution that will be used. It must be identical
across all parameter files (for multi-grid initializations). The
default is the maximum of GridDims or ParticleDims, whichever is
larger (in other words unless you are using a multi-grid
initialization, this parameter does not need to be set). Confused
yet?

	GridRefinement

	This integer is the sampling, for the baryon grid, in each
dimension, relative to MaxDims. For single-grid initializations,
this is generally 1. For multi-grids, it is the refinement factor
relative to the finest level. In other words, if the grid covered
the entire computational region, then each value in MaxDims would
equal GridDims times the GridRefinement factor. Default: 1

	ParticleRefinement

	Similar function as above, but for the particles. Note that it can
also be used to generate fewer particles than grids (i.e. the
GridRefinement and ParticleRefinement factors do not have to be the
same). Default: 1

	StartIndex

	For single-grid initializations, this should be the zero vector.
For multi-grid initializations it specifies the index (a triplet of
integers in 3D) of the left-hand corner of the grid to be
generated. It is specified in terms of the finest conceptual grid
and so ranges from 0 to MaxDims-1. Note also that for AMR, the
start and end of a sub-grid must lie on the cell-boundary of it’s
parent. That means that this number must be divisible by the
Refinement factor. The end of the sub-grid will be at index:
StartIndex + GridRefinement*GridDims. The co-ordinate system used
by this parameter is always the unshifted one (i.e. it does not
change if NewCenter is set).










Using mpgrafic


New in version 2.0.



This version of mpgrafic is a modified version of the public version of
mpgrafic, found at

http://www2.iap.fr/users/pichon/mpgrafic.html

to produce files readable by Enzo. It has been modified to write HDF5 files in
parallel.


Dependencies


	HDF5 with parallel and FORTRAN support (flags –enable-parallel
–enable-fortran)

	FFTW v2 with MPI support and different single and double
precision versions. It must be compiled once for single precision
and another time for double precision. For the former, use the
flags –enable-mpi –enable-type-prefix –enable-float. For double
precision, use –enable-mpi –enable-type-prefix.






Approach

Non-nested initial conditions are created only using mpgrafic.  However if the
user wants nested initial conditions, a full-resolution grid (e.g. 2563 grid for a 643 top grid with 2 nested grids) must be
created first and then post-processed with degraf to create a degraded
top-level grid and cropped (and degraded if not the finest level)
grids for the nested grids.

As with the original inits Enzo package, the baryon density and velocities are
written in a 3 dimensional array. The original inits writes the particle data
in 1-d arrays. In mpgrafic, only the particle velocities are written in a 3-d
array. Enzo has been modified to create the particle positions from the
Zel’dovich approximation from these velocities, so it is not needed to write
the positions anymore. Also it does not create particles that are represented
by a finer grid at the same position.

One big benefit of writing the particle velocities in a 3-d array is avoiding
the use of the RingIO tool because each processor knows which subvolume to read
within the velocity data.

As of HDF5 version 1.8.2, there exists a bug that creates corrupted datasets
when writing very large (e.g. >20483) datasets with multiple
components (4-d arrays). The HDF5 I/O in mpgrafic works around this bug by
creating one file per velocity component for both the baryons and particles.




How to run

First the user needs to compile both mpgrafic and degraf. The
configure / make systems are set up similarly.

Configure flags:





	
--enable-enzo
	turns on I/O for Enzo

	
--enable-double


		creates files in double precision

	
--enable-onedim


		creates one file per velocity component

	
--with-hdf=HDF5_DIR


		sets directory for parallel HDF5




If FFTW is not present in the user’s library path, the following
variables must be also set

CFLAGS="-I ${FFTW_DIR}/include"
FCFLAGS="-I ${FFTW_DIR}/include"
LDFLAGS="-L ${FFTW_DIR}/lib"





To run in parallel, you can use FC=mpif90 and LD=h5pfc, which the
compiler wrapper for parallel HDF5.

Example configure (for Mac OSX):

./configure LD="-bind_at_load" FC=mpif90 CC=mpicc --enable-enzo \
--enable-double --enable-onedim --with-hdf=/usr/local/hdf5/1.8.2p





Example configure scripts can be found in mpgrafic/mpgrafic-0.2/conf.*. After
a successful configure, you can make mpgrafic or degraf by typing ‘make’.

After the programs are compiled, you make the initial conditions by using a
python script, make_ic.py, in the top directory that simplifies the user input
into mpgrafic and degraf and the moving of files.


make_ic.py parameters


	nprocs

	number of processors

	boxsize

	box size in comoving Mpc (not Mpc/h)

	resolution

	top-level grid resolution

	n_levels

	level of the finest nested grid

	inner_width

	width of the finest nested grid

	buffer_cells

	number of cells separating nested grids

	seed

	random seed (must be 9 digits)

	name

	name of the data directory (saved in mpgrafic/data/name/)

	center

	how much to shift the data in order to center on a particular
region.

	LargeScaleCorrection

	whether to use a noise file from a lower-resolution run

	LargeScaleFile

	noise file from that lower-resolution run

	OneDimPerFile

	whether we’re using one file per velocity component

	omega_m

	Omega matter

	omega_v

	Omega lambda

	omega_b

	Omega baryon

	h0

	Hubble constant in units of [km/s/Mpc]

	sigma8

	sigma_8

	n_plawslope

	slope of power spectrum



After you set your parameters, run this script with

python make_ic.py





and it will re-compile mpgrafic and (for nested grids) degraf. Then it will run
mpgrafic for the full-resolution box. If the user wants nested grids, it will
copy the data files to mpgrafic/degraf and create the set of nested grid files.

The user cannot specify the initial redshift because mpgrafic determines it
from the parameter sigstart that is the maximum initial density fluctuation.
From this, mpgrafic calculates the initial redshift. This file is overwritten
by the python script, so if you want to change this parameter, change it in the
python script (routine write_grafic1inc).

The noise file is always kept in mpgrafic/mpgrafic-0.2/src and is named
$seed_$resolution.dat, where $resolution is the top-level grid resolution. It
can be re-used with LargeScaleFile if the user wants to re-simulate the volume
at a higher resolution.

The data files are moved to mpgrafic/data/$name. If nested grids were created,
degraf writes a set of parameters in enzo.params for copy-pasting into an Enzo
parameter file. Now you can move the files to the simulation directory and
start your Enzo cosmology simulation!
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Running Large Simulations

Here we describe how to efficiently run a large simulation on a high
number of processors, such as particular parameters to set and
suggested number of MPI tasks for a given problem size.  For a problem
to be scalable, most of the code must be parallel to achieve high
performance numbers on large MPI process counts (see Amdahl’s
Law [http://en.wikipedia.org/wiki/Amdahl’s_law]).  In general, the user wants to pick the number of processors
so that computation is still dominant over communication time.  If the
processor count is too high, communication time will become too large
and might even slow down the simulation!

For picking the number of processors for an Enzo run, a good starting
point is putting a 643 box on each processor for both AMR and
unigrid setups.  For example, a 2563 simulation would run
well on (256/64)3 = 64 processors.  For nested grid
simulations, the outer boxes usually require little computation
compared to the “zoom-in” region, so the processor count should be
based on the inner-most nested grid size.  The user can experiment
with increasing the processor count from this suggestion, but strong
scaling (i.e. linear speedup with processor count) is not to be
expected.  Little performance gains (as of v2.0) can be expected
beyond assigning a 323 cube per processor.


Note

The level-0 grid is only partitioned during the problem
initialization.  It will never be re-partitioned if the user
restarts with a different number of processors.  However, some
performance gains can be expected even if a processor does not
contain a level-0 grid because of the work on finer levels.




Important Parameters


	LoadBalancing: Default is 1, which moves work from overloaded to
underutilized processes, regardless of the grid position.  New for
v2.1: In some cases but not always, speedups can be found in load
balancing on a space filling curve [http://en.wikipedia.org/wiki/Hilbert_curve] (LoadBalancing = 4).  Here
the grids on each processor will be continuous on the space filling
curve.  This results in a grouped set of grids, requiring less
communication from other processors (and even other compute nodes).

	SubgridSizeAutoAdjust and OptimalSubgridsPerProcessor: New for
v2.1 Default is ON and 16, respectively.  The maximum subgrid size
and edge length will be dynamically adjusted on each AMR level
according to the number of cells on the level and number of
processors.  The basic idea behind increasing the subgrid sizes
(i.e. coalescing grids) is to reduce communication between grids.

	MinimumSubgridEdge and MaximumSubgridSize: Unused if
SubgridAutoAdjust is ON.  Increase both of these parameters to
increase the average subgrid size, which might reduce communication
and speedup the simulation.

	UnigridTranspose: Default is 0, which is employs blocking MPI
communication to transpose the root grid before and after the FFT.
In level-0 grids >= 10243, this becomes the most
expense part of the calculation.  In these types of large runs,
Option 2 is recommended, which uses non-blocking MPI calls; however
it has some additional memory overhead, which is the reason it is
not used by default.






Compile-time options


	max-subgrids: If the number of subgrids in a single AMR level
exceeds this value, then the simulation will crash.  Increase as
necessary.  Default: 100,000

	ooc-boundary-yes: Stores the boundary conditions out of core,
i.e. on disk.  Otherwise, each processor contains a complete copy of
the external boundary conditions.  This becomes useful in runs with
large level-0 grids.  For instance in a 10243 simulation
with 16 baryon fields, each processor will contain a set of
boundary conditions on 6 faces of 10242 with 16 baryon
fields.  In single precision, this requires 402MB!  Default: OFF

	fastsib-yes: Uses a chaining mesh to help locate sibling grids
when constructing the boundary conditions.  Default: ON

	log2alloc-yes: All arrays created with new are allocated
with sizes that are the nearest power of 2.  This will result in a
roughly 20% increase in overall memory usage, but in some cases,
should reduce memory fragmentation.  If you are having problems
with memory fragmentation, consider enabling this.  Default: OFF









          

      

      

    


    
         Copyright 2012, Enzo Developers.
      Last updated on Mar 09, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Enzo 2.5 documentation 

          	User Guide 
 
      

    


    
      
          
            
  
Enzo Output Formats

Although there are a number of ways of specifying when (and how
often) Enzo outputs information, there is only one type of output
‘dump’ (well, not quite – there are now movie dumps, see below),
which can also be used to restart the simulation. The output format
uses the following files, each of which begins with the output
name, here we use the example base_name, and are then followed by
the output number, ranging from 0000 to 9999 (if more than 10000
grids are generated then the number goes to 10000, etc.). When
restarting, or other times when an output filename needs to be
specified, use the name without any extension (e.g. enzo -r
base_name0000).


Summary of Files


	base_name0000

	This ascii file contains a complete listing of all the parameter
settings, both those specified in the initial parameter file, as
well as all those for which default values were assumed. The
parameters (see Enzo Parameter List) are in the same format
as that used in the input file: parameter_name = value. This file
is modifiable if you would like to restart from a certain point
with different parameter values.

	base_name0000.hierarchy

	This ascii file specifies the hierarchy structure as well as the
names of the grid files, their sizes, and what they contain. It
should not be modified.

	base_name0000.cpu00001

	The field information for each cpu (padded with zeros) is contained
in separate files with a root ‘Node’ for each grid, padded with
zeros to be eight digits. The format is the Hierarchy Data Format
(HDF) version 5, a self-describing machine-independent data format
developed and supported by the National Center for Supercomputing
Applications (NCSA). More information can be found on their
home page [http://www.hdfgroup.org/]. Most scientific
visualization packages support this format. Each field is stored as
it’s own one-, two- or three-dimensional Scientific Data Set (SDS),
and is named for identification. Particles (if any) are included
with a set of one-dimensional datasets under the top ‘grid’ node.

	base_name0000.boundary

	An ascii file which specifies boundary information. It is not
generally useful to modify.

	base_name0000.boundary.hdf

	Contains field-specific boundary information, in HDF format.

	base_name0000.radiation

	This ascii file is only generated if using the self-consistent
radiation field.






Output Units

The units of the physical quantities in the grid SDS’s are depend
on the problem being run. For most test problems there is no
physical length or time specified, so they can be be simply scaled.
For cosmology there are a set of units designed to make most
quantities of order unity (so single precision variables can be
used). These units are defined below (rho0 =
3*OmegaMatterNow*(100*HubbleConstantNow
km/s/Mpc)2/(8*Pi*G)).


	length: ComovingBoxSize/HubbleConstantNow * Mpc / (1+z)

	density: rho0 * (1+z)3

	time: 1/sqrt(4*Pi*G*rho0*(1+InitialRedshift)3)

	temperature: K

	velocity: (length/time)*(1+z)/(1+InitialRedshift) (this is z
independent)



The conversion factor is also given in the ascii output file
(base_name0000): search for DataCGSConversionFactor. Each field
has its own conversation factor, which converts that field to cgs
units. Users can also set completely arbitrary internal units, as
long as they are self-consistent: to see how to do this, go to
Enzo Internal Unit System.




Streaming Data Format

Purpose: To provide data on every N-th timestep of each AMR
level.


Method

We keep track of the elapsed timesteps on every AMR level.  Every N-th
timestep on a particular level L, all grids on levels >= L are written
for the baryon fields (specified by the user in MovieDataField)
and particles. The integers in MovieDataField correspond to the
field element in BaryonField, i.e. 0 = Density, 7 = HII
density. Temperature has a special value of 1000.

See Streaming Data Format for a full description of the streaming
data format parameters.




File format

All files are written in HDF5 with one file per processor per
top-level timestep. The filename is named AmiraDataXXXX_PYYY.hdf5
where XXXX is the file counter, which should equal the cycle
number, and YYY is the processor number. Each file has a header
indicating


	whether the data are cell-centered (1) or vertex-centered (0)
[int]

	number of baryon fields written [int]

	number of particle fields written [int]

	field names with the baryon fields first, followed by the
particle fields [array of variable-length strings]



The group names (grid-%d) are unique only in the file. Unique grids
are identified by their timestep number attribute and position.
Each
grid has the following attributes:


	AMR level [int]

	Timestep [int]

	Code time [double]

	Redshift [double]

	Ghost zones flag for each grid face [6 x int]

	Number of ghost zones in each dimension [3 x int]

	Cell width [3 x double]

	Grid origin in code units [3 x double]

	Grid origin in units of cell widths [3 x long long]



In addition to the HDF5 files, a binary index file is created for
fast I/O in post-processing. The filenames of the these files are the
same as the main data files but with the extension .idx. The header
consists of


	pi (to indicate endianness) [float]

	cell width on the top level [float]

	number of fields [char]

	cell-centered (1) or vertex-centered (0) [char]

	field names [number of fields x (64 char)]



For every grid written, an index entry is created with


	grid ID [int]

	code time [double]

	timestep [int]

	redshift [double]

	level [char]

	grid origin in units of cell widths [long long]

	grid dimensions [short]

	number of particles [int]



Lastly, we output an ASCII file with the code times and redshifts of every top
level timestep for convenience when choosing files to read afterwards.
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Analyzing With YT


What is YT?

YT is a python-based tool designed for analyzing and visualizing
Adaptive Mesh Refinement data, specifically as output from Enzo. YT
is completely free and open source, with an active and expanding
development community, and it presents to the user both high-level
and low-level APIs. The
documentation [http://yt.enzotools.org/doc/] contains a
tutorial as well as an API reference, but here we will step through
some simple steps toward creating script to make simple plots of a
cosmological simulation.

This brief tutorial presupposes that you have run the installation
script and are comfortable launching python.  (The install script will
tell you how!) It’s also encouraged to launch the special YT-enhanced
IPython [http://ipython.scipy.org/] shell via the command iyt,
which (thanks to IPython!) features filesystem navigation and tab
completion, along with interactive plotting capabilities.




Making Slices

Here is a sample script that will make a set of slices centered on
the maximum density location, with a width of 100 kpc.

from yt.mods import *
pf = EnzoStaticOutput("RedshiftOutput0035.dir/RedshiftOutput0035")

pc = raven.PlotCollection(pf)
pc.add_slice("Density",0)
pc.add_slice("Density",1)
pc.add_slice("Density",2)
pc.set_width(100.0,'kpc')
pc.save("z35_100kpc")





If you put this into a file called my_script.py, you can execute
it with python2.5 my_script.py and it will save out a set of
images prefixed with z35_100kpc in PNG format.




Making Simple Radial Profiles

If you want to make radial profiles, you can generate and plot them
very easily with YT. Here is a sample script to do so.

from yt.mods import *
pf = EnzoStaticOutput("RedshiftOutput0035.dir/RedshiftOutput0035")

pc = PlotCollection(pf)

pc.add_profile_sphere(100.0, 'kpc', ["Density", "Temperature"])
pc.save("z35_100kpc")

pc.switch_z("VelocityMagnitude")
pc.save("z35_100kpc")





To show the mass distribution in the Density-Temperature plane, we
would make a phase diagram.

from yt.mods import *
pf = EnzoStaticOutput("RedshiftOutput0035.dir/RedshiftOutput0035")

pc = PlotCollection(pf)

pc.add_phase_sphere(100.0, 'kpc', ["Density", "Temperature", "CellMassMsun"], weight=None)
pc.save("z35_100kpc")








More Information

For more information on yt, see the yt website [http://yt.enzotools.org],
where you will find mailing lists, documentation, API documentation, a cookbook
and even a gallery of images.
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Simulation Names and Identifiers

To help track and identify simulations and datasets, a few new
lines have been added to the parameter file:


	MetaDataIdentifier

	short string persisted across datasets

	MetaDataSimulationUUID

	uuid persisted across datasets

	MetaDataDatasetUUID

	unique dataset uuid

	MetaDataRestartDatasetUUID

	input dataset uuid

	MetaDataInitialConditionsUUID

	initial conditions uuid



The parameters stored during a run are members of the
TopGridData struct.


MetaDataIdentifier

This is a character string without spaces (specifically, something
that can be picked by “%s”), that can be defined in a parameter
file, and will be written out in every following output. It’s
intended to be a human-friendly way of tracking datasets. For
example

Example:

MetaDataIdentifier = Cosmology512_Mpc_run4








MetaDataSimulationUUID

The MetaDataSimulationUUID is a globally unique identifier for a collection of
datasets.  Universally Unique Identifiers [http://en.wikipedia.org/wiki/Universally_Unique_Identifier] (UUIDs) are
opaque identifiers using random 128-bit numbers, with an extremely low chance
of collision. Therefore, they are very useful when trying to label data coming
from multiple remote resources (say, computers distributed around the world).

Example:

MetaDataSimulationUUID = e5f72b77-5258-45ba-a376-ffe11907fae1





Like the MetaDataIdentifier, the MetaDataSimulationUUID is read in at
the beginning of a run, and then re-written with each output.  However, if one
is not found initially, a new one will be generated, using code from the ooid
library [http://sourceforge.net/projects/ooid/] included in Enzo.

UUIDs can be generated with a variety of tools, including the python standard
library.




MetaDataDatasetUUID

A MetaDataDatasetUUID is created at each output.

Example:

MetaDataDatasetUUID = b9d78cc7-2ecf-4d66-a23c-a1dcd40e7955





MetaDataRestartDatasetUUID



While reading the parameter file, if a MetaDataDatasetUUID line is
found, it is stored, and re-written as MetaDataRestartDatasetUUID.
The intention of this is help track datasets across restarts and
parameter tweaks.

Example:

MetaDataRestartDatasetUUID = b9d78cc7-2ecf-4d66-a23c-a1dcd40e7955








MetaDataInitialConditionsUUID

This is similar to MetaDataRestartDatasetUUID, except it’s intended for tracking which initial conditions were used for a simulation.

Example:

MetaDataInitialConditionsUUID   = 99f71bdf-e56d-4daf-88f6-1ecd988cbc9f








Still to be done



	Add UUID generation to inits store it in the HDF5 output.

	Preserve the UUID when using ring.

	Have Enzo check for the UUID in both cases.
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Embedded Python

Python can now be embedded inside Enzo, for inline analysis as well as
interaction. This comes with several shortcomings, but some compelling strong
points.


How To Compile

The configure option that controls compilation of the Python code
can be toggled with

make python-yes





or to turn it off,

make python-no





This will look for the following variables in the machine-specific Makefile:

MACH_INCLUDES_PYTHON
MACH_LIBS_PYTHON





for an example of how to define these variables, see
Make.mach.orange in the source repository.




How it Works

On Enzo startup, the Python interface will be initialized. This constitutes the
creation of an interpreter within the memory-space of each Enzo process, as
well as import and construct the NumPy [http://numpy.scipy.org/] function
table. Several Enzo-global data objects for storing grid parameters and
simulation parameters will be initialized and the Enzo module will be created
and filled with those data objects.

Once the Python interface and interpreter have finished initializing, the
module user_script will be imported – typically this means that a script named
user_script.py in the current directory will be imported, but it will
search the entire import path as well. Every PythonSubcycleSkip subcycles,
at the bottom of the hierarchy in EvolveLevel.C the entire grid hierarchy
and the current set of parameters will be exported to the Enzo module and then
user_script.main() will be called.




How to Run

By constructing a script inside user_script.py, the Enzo hierarchy can be
accessed and modified. The analysis toolkit yt [http://yt.enzotools.org/]
has functionality that can abstract much of the data-access and handling.
Currently several different plotting methods – profiles, phase plots, slices
and cutting planes – along with all derived quantities can be accessed and
calculated. Projections cannot yet be made, but halo finding can be performed
with Parallel HOP only. The following script is an example of a script that
will save a slice as well as print some information about the simulation. Note
that, other than the instantiation of lagos.EnzoStaticOutputInMemory, this
script is identical to one that would be run on an output located on disk.

Recipes and convenience functions are being created to make every aspect of
this simpler.

from yt.mods import *

def main():
     pf = lagos.EnzoStaticOutputInMemory()
     pc = PlotCollection(pf)
     pc.add_slice("Density", 0)
     pc.save("%s" % pf)
     v, c = pf.h.find_max("Density")
     sp = pf.h.sphere(c, 1.0/pf['mpc'])
     totals = sp.quantities["TotalQuantity"](["CellMassMsun","Ones"], lazy_reader=True)
     print "Total mass within 1 mpc: %0.3e total cells: %0.3e" % (totals[0], totals[1])








Which Operations Work

The following operations in yt work:



	Derived quantities

	Slices

	Cutting planes

	Fixed Resolution Projections (i.e., non-adaptive)

	1-, 2-, 3-D Profiles






This should enable substantial analysis to be conducted in-line.  Unfortunate
adaptive projections require a domain decomposition as they currently stand (as
of yt-1.7) but this will be eliminated with a quad-tree projection method
slated to come online in yt-2.0.  In future versions of yt the volume rendering
approach will be parallelized using kD-tree decomposition and it will also
become available for inline processing.

Please drop a line to the yt or Enzo mailing lists for help with any of this!




Things Not Yet Done


	Adaptive Projections do not work.

	Particles are not yet exported correctly

	Speed could be improved, but should be extremely efficient for a small
number of grids.  Future versions will utilize intercommunicators in MPI to
allow for asynchronous analysis.
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The Enzo Hierarchy File - Explanation and Usage

The Enzo Hierarchy file is a representation of the internal memory
state of the entire hierarchy of grids. As such, its format –
while somewhat obtuse at first – reflects that context. Each grid
entry has a set number of fields that describe its position in
space, as well as the fields that are affiliated with that grid:

Note: We are in the process of transitioning to an HDF5-formatted
Hierarchy File.

Grid = 1
Task              = 4
GridRank          = 3
GridDimension     = 38 22 22
GridStartIndex    = 3 3 3
GridEndIndex      = 34 18 18
GridLeftEdge      = 0 0 0
GridRightEdge     = 1 0.5 0.5
Time              = 646.75066015177
SubgridsAreStatic = 0
NumberOfBaryonFields = 8
FieldType = 0 1 4 5 6 19 20 21
BaryonFileName = ./RD0005/RedshiftOutput0005.cpu0000
CourantSafetyNumber    = 0.300000
PPMFlatteningParameter = 0
PPMDiffusionParameter  = 0
PPMSteepeningParameter = 0
NumberOfParticles   = 20
ParticleFileName = ./RD0005/RedshiftOutput0005.cpu0000
GravityBoundaryType = 0
Pointer: Grid[1]->NextGridThisLevel = 2





The final field, starting with “Pointer”, is slightly more
complicated and will be discussed below.

Grid = 1


This is the ID of the grid. Enzo grids are indexed internally
starting at 1.


Task = 3


This grid was written by processor 3 and will be read in by it if
restarting more than 4 processors.


GridRank = 3


This is the dimensionality of the grid.


GridDimension = 38 22 22


Dimensions, including ghost zones.


GridStartIndex = 3 3 3


The first index of data values owned by this grid.


GridEndIndex = 34 18 18


The final index owned by this grid. The active zones have
dimensionality of GridEndIndex - GridStartIndex + 1.


GridLeftEdge = 0 0 0


In code units, between DomainLeftEdge and DomainRightEdge,
the origin of this grid.


GridRightEdge = 1 0.5 0.5


In code units, between DomainLeftEdge and DomainRightEdge,
the right-edge of this grid. dx = (GridRightEdge -
GridLeftEdge)/(GridEndIndex - GridStartIndex + 1).


Time = 646.75066015177


The current time to which the baryon values in this grid have been
evolved.


SubgridsAreStatic = 0


Whether refinement can occur in the subgrids.


NumberOfBaryonFields = 8


The number of data fields associated with this grid.


FieldType = 0 1 4 5 6 19 20 21


The integer identifiers of each field, in order, inside this grid.


BaryonFileName = ./RD0005/RedshiftOutput0005.cpu0000


The HDF5 file in which the baryons fields are stored.


CourantSafetyNumber = 0.300000


Courant safety number for this grid (governs timestepping.)


PPMFlatteningParameter = 0


Flattening parameter for this grid (governs PPM hydro.)


PPMDiffusionParameter = 0


Diffusion parameter for this grid (governs PPM hydro.)


PPMSteepeningParameter = 0


Steepening parameter for this grid (governs PPM hydro.)


NumberOfParticles = 20


How many particles are located in this grid at this timestep.


ParticleFileName = ./RD0005/RedshiftOutput0005.cpu0000


The HDF5 file in which the baryon fields and particle data are
stored.  This field will not exist if there aren’t any particles in
the grid.


GravityBoundaryType = 0


Boundary type inside gravity solver.



HDF5-formatted Hierarchy File

We are transitioning to an HDF5-formatted hierarchy file. This is an
improvement because reading a large (many thousand grid) ASCII
hierarchy file take a long time. [Other improvements?]

The structure of the file:

Although HDF5 tools like ‘h5ls’ and ‘h5dump’ can be used to explore
the structure of the file, it’s probably easiest to use python and
h5py. This is how to open an example hierarchy file (from
run/Cosmology/Hydro/AMRCosmologySimulation) in python.

>>> import h5py
>>> f = h5py.File('RD0007/RedshiftOutput0007.hierarchy.hdf5','r')





The root group (‘/’) contains a number of attributes.

>>> f.attrs.keys()
['Redshift', 'NumberOfProcessors', 'TotalNumberOfGrids']
>>> f.attrs['Redshift']
0.0
>>> f.attrs['NumberOfProcessors']
1
>>> f.attrs['TotalNumberOfGrids']
44





So we see that this is a z=0 output from a simulation run on a single
core and it contains a total of 44 grids.

Now let’s look at the groups contained in this file.

>>> f.keys()
['Level0', 'Level1', 'Level2', 'LevelLookupTable']





The simulation has two levels of refinement, so there are a total of
three HDF5 groups that contain information about the grids at each
level. Additionally, there is one more dataset (‘LevelLookupTable’)
that is useful for finding which level a given grid belongs to. Let’s
have a closer look.

>>> level_lookup = f['LevelLookupTable']
>>> level_lookup.shape
(44,)
>>> level_lookup[:]
array([0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])





This shows you that the first grid is on level 0, the second on level
1, and all the remaining grids on level 2. Let’s have a look at the
‘Level2’ group.

 >>> g = f['Level2']
 >>> g.keys()
['Grid00000003', 'Grid00000004', 'Grid00000005', ..., 'Grid00000043', 'Grid00000044']





Each level group also has one attribute, ‘NumberOfGrids’.

>>> g.attrs['NumberOfGrids']
42





The hierarchy information about each of the grids is stored as both
attributes and datasets.

>>> grid = g['Grid00000003']
>>> grid.attrs.keys()
['Task', 'GridRank', 'Time', 'OldTime', 'SubgridsAreStatic', 'NumberOfBaryonFields', 'FieldType',
 'BaryonFileName', 'CourantSafetyNumber', 'PPMFlatteningParameter', 'PPMDiffusionParameter',
 'PPMSteepeningParameter', 'ParticleFileName', 'GravityBoundaryType', 'NumberOfDaughterGrids',
 'NextGridThisLevelID', 'NextGridNextLevelID']
>>> grid.keys()
['GridDimension', 'GridEndIndex', 'GridGlobalPosition',
 'GridLeftEdge', 'GridRightEdge', 'GridStartIndex', 'NumberOfParticles']





Besides the parameters that have been described above, there are few
new elements:

GridGlobalPosition is LeftGridEdge[] expressed in integer indices
of this level, i.e. running from 0 to RootGridDimension[] *
RefinementFactors[]**level - 1. This may be useful for re-calculating
positions in long double precision (which is not universally supported
by HDF5) at runtime.

NumberOfDaughterGrids gives you the number of daughter grids.

DaughterGrids is a group that contains HDF5-internal soft links to
the daugher datasets. Example:

>>> daughters = grid['DaughterGrids']
>>> daughters.keys()
['DaughterGrid0000', 'DaughterGrid0001', 'DaughterGrid0002', ..., 'DaughterGrid0041']
>>> daughters.get('DaughterGrid0000', getlink=True)
<SoftLink to "/Level2/Grid00000003">





In this case there are 42 daughter grids.

ParentGrids is a group that contains HDF5-internal soft links to
parent grids on all levels above the present grid’s level. Example for
a level 2 grid:

>>> grid = f['Level2']['Grid00000044']
>>> parents = grid['ParentGrids']
>>> parents.keys()
['ParentGrid_Level0', 'ParentGrid_Level1']
>>> parents.get('ParentGrid_Level0', getlink=True)
<SoftLink to "/Level0/Grid00000001">





Lastly, there’s one additional (experimental) feature that is
available only if you’ve compiled with verson 1.8+ of HDF5. In that
case you can set ‘#define HAVE_HDF5_18’ in
Grid_WriteHierarchyInformationHDF5.C [perhaps this should become a
Makefile configuration option?], and then there will be an external
HDF5 link to the HDF5 file containing the actual data for that grid. Example:

>>> grid.get('GridData', getlink=True)
>>> <ExternalLink to "Grid00000002" in file "./RD0007/RedshiftOutput0007.cpu0000"








Controlling the Hierarchy File Output Format

There are two new parameters governing the format of the hierarchy
format:

[OutputControl.]HierarchyFileInputFormat = 0, 1


This specifies the format of the hierarchy file to be read in: 0 =
ASCII, 1 = HDF5. Default set to 0 for now, but will change to 1 in the
future.


[OutputControl.]HierarchyFileOutputFormat = 0, 1, 2  [OutputControl.HierarchyFileOutputFormat in new-config]


This specifies the format of the hierarchy file to be written out: 0
= ASCII, 1 = HDF5, 2 = both. Default set to 2 for now, but will change
to 1 in the future.
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Enzo Flow Chart, Source Browser

Here’s a cartoon of
Enzo. [http://lca.ucsd.edu/software/enzo/v1.5/flowchart/] This was
written as a first look as the details of how enzo works.  Black
arrows indicate further flow charts. Grey boxes (usually) indicate
direct links to the source code.

No guarantees are made regarding the correctness of this flowchart –
it’s meant to help get a basic understanding of the flow of Enzo
before extensive code modifications.  Also see the Enzo Source
Browser. [http://lca.ucsd.edu/software/enzo/v1.0.1/source_browser/]
This is a second attempt at the same thing in a more dynamic way.  It
allows one to (in principle) see all the routines called from a
function, in order, and jump to the source showing the call. It also
allows you to see a reverse call stack of every routine that calls a
particular function.
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Enzo Test Problem Parameters








	Directory
	Parameter File
	Source




	GravitySolver/BinaryCollapse
	BinaryCollapse.enzo
	X [http://code.google.com/p/enzo/source/browse/run/GravitySolver/BinaryCollapse/BinaryCollapse.enzo]


	GravitySolver/GravityTest
	GravityTest.enzo
	X [http://code.google.com/p/enzo/source/browse/run/GravitySolver/GravityTest/GravityTest.enzo]


	GravitySolver/GravityStripTest
	GravityStripTest.enzo
	X [http://code.google.com/p/enzo/source/browse/run/GravitySolver/GravityStripTest/GravityStripTest.enzo]


	GravitySolver/GravityTestSphere
	GravityTestSphere.enzo
	X [http://code.google.com/p/enzo/source/browse/run/GravitySolver/GravityTestSphere/GravityTestSphere.enzo]


	GravitySolver/TestOrbit
	TestOrbit.enzo
	X [http://code.google.com/p/enzo/source/browse/run/GravitySolver/TestOrbit/TestOrbit.enzo]


	Cosmology/Hydro/AdiabaticExpansion.
	AdiabaticExpansion.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Cosmology/Hydro/AdiabaticExpansion/AdiabaticExpansion.enzo]


	Cosmology/Hydro/AMRCosmologySimu...
	AMRCosmologySimulation.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Cosmology/Hydro/AMRCosmologySimulation/AMRCosmologySimulation.enzo]


	Cosmology/Hydro/AMRZeldovichPancake
	AMRZeldovichPancake.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Cosmology/Hydro/AMRZeldovichPancake/AMRZeldovichPancake.enzo]


	Cosmology/Hydro/SphericalInfall
	SphericalInfall.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Cosmology/Hydro/SphericalInfall/SphericalInfall.enzo]


	Cosmology/Hydro/ZeldovichPancake
	ZeldovichPancake.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Cosmology/Hydro/ZeldovichPancake/ZeldovichPancake.enzo]


	DrivenTurbulence3D
	DrivenTurbulence3D.enzo
	X [http://code.google.com/p/enzo/source/browse/run/DrivenTurbulence3D/DrivenTurbulence3D.enzo]


	FLD/Cosmology/Hydro/SphericalInfall
	SphericalInfall.enzo
	X [http://code.google.com/p/enzo/source/browse/run/FLD/Cosmology/Hydro/SphericalInfall/SphericalInfall.enzo]


	FLD
	FLDPhotonTest.enzo
	X [http://code.google.com/p/enzo/source/browse/run/FLD/FLDPhotonTest.enzo]


	FLD
	FLD_LWRadParameters.enzo
	X [http://code.google.com/p/enzo/source/browse/run/FLD/FLD_LWRadParameters.enzo]


	Cooling/CoolingTest
	CoolingTest_Cloudy.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Cooling/CoolingTest/CoolingTest_Cloudy.enzo]


	Cooling/CoolingTest
	CoolingTest_JHW.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Cooling/CoolingTest/CoolingTest_JHW.enzo]


	Cooling/CoolingTest
	CoolingTest_MS1.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Cooling/CoolingTest/CoolingTest_MS1.enzo]


	Hydro/Hydro-1D/Toro-3-ShockTube
	Toro-3-ShockTube.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/Toro-3-ShockTube/Toro-3-ShockTube.enzo]


	Hydro/Hydro-1D/Toro-3-ShockTube
	Toro-3-ShockTubeAMR.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/Toro-3-ShockTube/Toro-3-ShockTubeAMR.enzo]


	Hydro/Hydro-1D/PressurelessCollapse
	PressurelessCollapse.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/PressurelessCollapse/PressurelessCollapse.enzo]


	Hydro/Hydro-1D/SodShockTube
	SodShockTube.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/SodShockTube/SodShockTube.enzo]


	Hydro/Hydro-1D/SodShockTube
	SodShockTubeAMR.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/SodShockTube/SodShockTubeAMR.enzo]


	Hydro/Hydro-1D/Toro-1-ShockTube
	Toro-1-ShockTubeAMR.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/Toro-1-ShockTube/Toro-1-ShockTubeAMR.enzo]


	Hydro/Hydro-1D/Toro-1-ShockTube
	Toro-1-ShockTube.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/Toro-1-ShockTube/Toro-1-ShockTube.enzo]


	Hydro/Hydro-1D/Toro-2-ShockTube
	Toro-2-ShockTubeAMR.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/Toro-2-ShockTube/Toro-2-ShockTubeAMR.enzo]


	Hydro/Hydro-1D/Toro-2-ShockTube
	Toro-2-ShockTube.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/Toro-2-ShockTube/Toro-2-ShockTube.enzo]


	Hydro/Hydro-1D/FreeExpansion
	FreeExpansion.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/FreeExpansion/FreeExpansion.enzo]


	Hydro/Hydro-1D/Toro-4-ShockTube
	Toro-4-ShockTubeAMR.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/Toro-4-ShockTube/Toro-4-ShockTubeAMR.enzo]


	Hydro/Hydro-1D/Toro-4-ShockTube
	Toro-4-ShockTube.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/Toro-4-ShockTube/Toro-4-ShockTube.enzo]


	Hydro/Hydro-1D/Toro-5-ShockTube
	Toro-5-ShockTubeAMR.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/Toro-5-ShockTube/Toro-5-ShockTubeAMR.enzo]


	Hydro/Hydro-1D/Toro-5-ShockTube
	Toro-5-ShockTube.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/Toro-5-ShockTube/Toro-5-ShockTube.enzo]


	Hydro/Hydro-1D/Toro-6-ShockTube
	Toro-6-ShockTube.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/Toro-6-ShockTube/Toro-6-ShockTube.enzo]


	Hydro/Hydro-1D/Toro-7-ShockTube
	Toro-7-ShockTube.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/Toro-7-ShockTube/Toro-7-ShockTube.enzo]


	Hydro/Hydro-1D/WavePool
	WavePool.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-1D/WavePool/WavePool.enzo]


	Hydro/Hydro-2D/NohProblem2D
	NohProblem2D.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/NohProblem2D/NohProblem2D.enzo]


	Hydro/Hydro-2D/Athena-RayleighTa...
	Athena-RayleighTaylor.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/Athena-RayleighTaylor/Athena-RayleighTaylor.enzo]


	Hydro/Hydro-2D/DoubleMachReflection
	DoubleMachReflection.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/DoubleMachReflection/DoubleMachReflection.enzo]


	Hydro/Hydro-2D/FreeExpansionAMR
	FreeExpansionAMR.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/FreeExpansionAMR/FreeExpansionAMR.enzo]


	Hydro/Hydro-2D/HDMHD2DCheckOddEv...
	HDMHD2DCheckOddEvenCouplingOfRie...
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/HDMHD2DCheckOddEvenCouplingOfRiemannSolver/HDMHD2DCheckOddEvenCouplingOfRiemannSolver.enzo]


	Hydro/Hydro-2D/Implosion
	Implosion.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/Implosion/Implosion.enzo]


	Hydro/Hydro-2D/ImplosionAMR
	ImplosionAMR.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/ImplosionAMR/ImplosionAMR.enzo]


	Hydro/Hydro-2D/NohProblem2DAMR
	NohProblem2DAMR.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/NohProblem2DAMR/NohProblem2DAMR.enzo]


	Hydro/Hydro-2D/AMRShockPool2D
	AMRShockPool2D.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/AMRShockPool2D/AMRShockPool2D.enzo]


	Hydro/Hydro-2D/RadiatingShockWave..
	RadiatingShockWave.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/RadiatingShockWave/RadiatingShockWave.enzo]


	Hydro/Hydro-2D/RampedKelvinHelmh...
	RampedKelvinHelmholtz2D.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/RampedKelvinHelmholtz2D/RampedKelvinHelmholtz2D.enzo]


	Hydro/Hydro-2D/SedovBlast-MHD-2D...
	SedovBlast-MHD-2D-Gardiner.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/SedovBlast-MHD-2D-Gardiner/SedovBlast-MHD-2D-Gardiner.enzo]


	Hydro/Hydro-2D/SedovBlast
	SedovBlast.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/SedovBlast/SedovBlast.enzo]


	Hydro/Hydro-2D/SedovBlast-MHD-2D...
	SedovBlast-MHD-2D-Fryxell.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/SedovBlast-MHD-2D-Fryxell/SedovBlast-MHD-2D-Fryxell.enzo]


	Hydro/Hydro-2D/SedovBlastAMR
	SedovBlastAMR.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/SedovBlastAMR/SedovBlastAMR.enzo]


	Hydro/Hydro-2D/ShockPool2D
	ShockPool2D.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-2D/ShockPool2D/ShockPool2D.enzo]


	Hydro/Hydro-3D/ProtostellarColla...
	ProtostellarCollapse_Std.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-3D/ProtostellarCollapse_Std/ProtostellarCollapse_Std.enzo]


	Hydro/Hydro-3D/CollideTest
	CollideTest.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-3D/CollideTest/CollideTest.enzo]


	Hydro/Hydro-3D/ExtremeAdvectionTest
	ExtremeAdvectionTest.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-3D/ExtremeAdvectionTest/ExtremeAdvectionTest.enzo]


	Hydro/Hydro-3D/NohProblem3D
	NohProblem3D.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-3D/NohProblem3D/NohProblem3D.enzo]


	Hydro/Hydro-3D/NohProblem3DAMR
	NohProblem3DAMR.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-3D/NohProblem3DAMR/NohProblem3DAMR.enzo]


	Hydro/Hydro-3D/CollapseTestNonCo...
	CollapseTestNonCosmological.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-3D/CollapseTestNonCosmological/CollapseTestNonCosmological.enzo]


	Hydro/Hydro-3D/RotatingCylinder
	RotatingCylinder.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-3D/RotatingCylinder/RotatingCylinder.enzo]


	Hydro/Hydro-3D/ShearingBox
	ShearingBox.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-3D/ShearingBox/ShearingBox.enzo]


	Hydro/Hydro-3D/ShockPool3D
	ShockPool3D.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-3D/ShockPool3D/ShockPool3D.enzo]


	Hydro/Hydro-3D/StripTest
	StripTest.enzo
	X [http://code.google.com/p/enzo/source/browse/run/Hydro/Hydro-3D/StripTest/StripTest.enzo]


	MHD/1D/BrioWu-MHD-1D
	BrioWu-MHD-1D.enzo
	X [http://code.google.com/p/enzo/source/browse/run/MHD/1D/BrioWu-MHD-1D/BrioWu-MHD-1D.enzo]


	MHD/2D/MHD2DRotorTest
	MHD2DRotorTest.enzo
	X [http://code.google.com/p/enzo/source/browse/run/MHD/2D/MHD2DRotorTest/MHD2DRotorTest.enzo]


	RadiationTransportFLD/RadStreamY0..
	RadiationStreamY0.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStreamY0/RadiationStreamY0.enzo]


	RadiationTransportFLD/IlievEtAl1_sp
	RHIonization1_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/IlievEtAl1_sp/RHIonization1_sp.enzo]


	RadiationTransportFLD/IlievEtAl2_sp
	RHIonization2_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/IlievEtAl2_sp/RHIonization2_sp.enzo]


	RadiationTransportFLD/IlievEtAl1
	RHIonization1.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/IlievEtAl1/RHIonization1.enzo]


	RadiationTransportFLD/IlievEtAl2
	RHIonization2.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/IlievEtAl2/RHIonization2.enzo]


	RadiationTransportFLD/RadShockLa...
	RadiatingShockLab1D_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadShockLab1D_sp/RadiatingShockLab1D_sp.enzo]


	RadiationTransportFLD/RadShockLab1D
	RadiatingShockLab1D.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadShockLab1D/RadiatingShockLab1D.enzo]


	RadiationTransportFLD/RadShockLa...
	RadiatingShockLab_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadShockLab_sp/RadiatingShockLab_sp.enzo]


	RadiationTransportFLD/RadShockLab..
	RadiatingShockLab.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadShockLab/RadiatingShockLab.enzo]


	RadiationTransportFLD/RadStream1...
	RadiationStream1D_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStream1D_sp/RadiationStream1D_sp.enzo]


	RadiationTransportFLD/RadStreamZ0..
	RadiationStreamZ0.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStreamZ0/RadiationStreamZ0.enzo]


	RadiationTransportFLD/RadStreamZ...
	RadiationStreamZ1_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStreamZ1_sp/RadiationStreamZ1_sp.enzo]


	RadiationTransportFLD/RadStreamX1..
	RadiationStreamX1.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStreamX1/RadiationStreamX1.enzo]


	RadiationTransportFLD/RadStreamY1..
	RadiationStreamY1.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStreamY1/RadiationStreamY1.enzo]


	RadiationTransportFLD/RadStream1D..
	RadiationStream1D.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStream1D/RadiationStream1D.enzo]


	RadiationTransportFLD/RadStreamX...
	RadiationStreamX1_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStreamX1_sp/RadiationStreamX1_sp.enzo]


	RadiationTransportFLD/RadStreamZ1..
	RadiationStreamZ1.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStreamZ1/RadiationStreamZ1.enzo]


	RadiationTransportFLD/CosmologyF...
	CosmologyFLD_RT.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/CosmologyFLD_RT/CosmologyFLD_RT.enzo]


	RadiationTransportFLD/RadStreamX0..
	RadiationStreamX0.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStreamX0/RadiationStreamX0.enzo]


	RadiationTransportFLD/RadStreamZ...
	RadiationStreamZ0_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStreamZ0_sp/RadiationStreamZ0_sp.enzo]


	RadiationTransportFLD/RadStreamX...
	RadiationStreamX0_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStreamX0_sp/RadiationStreamX0_sp.enzo]


	RadiationTransportFLD/SG_q05z4_sp..
	CosmoIonization_q05z4_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/SG_q05z4_sp/CosmoIonization_q05z4_sp.enzo]


	RadiationTransportFLD/RadStreamY...
	RadiationStreamY0_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStreamY0_sp/RadiationStreamY0_sp.enzo]


	RadiationTransportFLD/RadStreamY...
	RadiationStreamY1_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/RadStreamY1_sp/RadiationStreamY1_sp.enzo]


	RadiationTransportFLD/SG_q05z10
	CosmoIonization_q05z10.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/SG_q05z10/CosmoIonization_q05z10.enzo]


	RadiationTransportFLD/SG_q05z10_sp.
	CosmoIonization_q05z10_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/SG_q05z10_sp/CosmoIonization_q05z10_sp.enzo]


	RadiationTransportFLD/SG_q05z4
	CosmoIonization_q05z4.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/SG_q05z4/CosmoIonization_q05z4.enzo]


	RadiationTransportFLD/SG_q5z10
	CosmoIonization_q5z10.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/SG_q5z10/CosmoIonization_q5z10.enzo]


	RadiationTransportFLD/SG_q5z10_sp..
	CosmoIonization_q5z10_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/SG_q5z10_sp/CosmoIonization_q5z10_sp.enzo]


	RadiationTransportFLD/SG_q5z4
	CosmoIonization_q5z4.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/SG_q5z4/CosmoIonization_q5z4.enzo]


	RadiationTransportFLD/SG_q5z4_sp
	CosmoIonization_q5z4_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/SG_q5z4_sp/CosmoIonization_q5z4_sp.enzo]


	RadiationTransportFLD/TS1
	TurnerStoneEquil1.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/TS1/TurnerStoneEquil1.enzo]


	RadiationTransportFLD/TS1_sp
	TurnerStoneEquil1_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/TS1_sp/TurnerStoneEquil1_sp.enzo]


	RadiationTransportFLD/TS2
	TurnerStoneEquil2.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/TS2/TurnerStoneEquil2.enzo]


	RadiationTransportFLD/TS2_sp
	TurnerStoneEquil2_sp.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransportFLD/TS2_sp/TurnerStoneEquil2_sp.enzo]


	RadiationTransport/PhotonTestAMR
	PhotonTestAMR.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransport/PhotonTestAMR/PhotonTestAMR.enzo]


	RadiationTransport/PhotonShadowing.
	PhotonShadowing.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransport/PhotonShadowing/PhotonShadowing.enzo]


	RadiationTransport/PhotonTest
	PhotonTest.enzo
	X [http://code.google.com/p/enzo/source/browse/run/RadiationTransport/PhotonTest/PhotonTest.enzo]
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Enzo Parameter List

The following is a largely complete list of the parameters that Enzo
understands, and a brief description of what they mean. They are grouped
roughly by meaning; an alphabetical list is also available. Parameters for
individual test problems are also listed here.

This parameter list has two purposes. The first is to describe and explain the
parameters that can be put into the initial parameter file that begins a run.
The second is to provide a comprehensive list of all parameters that the code
uses, including those that go into an output file (which contains a complete
list of all parameters), so that users can better understand these output
files.

The parameters fall into a number of categories:


	external

	These are user parameters in the sense that they can be set in the
parameter file, and provide the primary means of communication
between Enzo and the user.

	internal

	These are mostly not set in the parameter file (although strictly
speaking they can be) and are generally used for program to
communicate with itself (via the restart of output files).

	obsolete

	No longer used.

	reserved

	To be used later.



Generally the external parameters are the only ones that are modified or set,
but the internal parameters can provide useful information and can sometimes be
modified so I list them here as well. Some parameters are true/false or on/off
boolean flags.  Eventually, these may be parsed, but in the meantime, we use the
common convention of 0 meaning false or off and 1 for true or on.

This list includes parameters for the Enzo 2.3 release.



	Initialization Parameters

	I/O Parameters
	General

	Stopping Parameters

	Streaming Data Format

	Simulation Identifiers and UUIDs





	Hierarchy Control Parameters

	Gravity Parameters
	General

	External Gravity Source





	Hydrodynamics Parameters
	General

	Minimum Pressure Support Parameters

	Magnetohydrodynamics (CT) Parameters

	Magnetohydrodynamics (Dedner) Parameters





	Cooling Parameters
	Simple Cooling Options

	Cloudy Cooling

	The Grackle





	Particle Parameters

	Star Formation and Feedback Parameters
	General

	Normal Star Formation

	Molecular Hydrogen Regulated Star Formation

	Population III Star Formation

	Radiative Star Cluster Formation

	Massive Black Hole Particle Formation

	Sink Formation and Feedback





	Radiation Parameters
	Background Radiation Parameters

	Radiative Transfer (Ray Tracing) Parameters

	Radiative Transfer (FLD) Parameters

	Radiative Transfer (FLD) Implicit Solver Parameters

	Radiative Transfer (FLD) Split Solver Parameters





	Cosmology Parameters

	Massive Black Hole Physics Parameters
	Accretion Physics

	Feedback Physics





	Shock Finding Parameters

	Cosmic Ray Two-Fluid Model Parameters

	Conduction

	Inline Analysis
	Inline Halo Finding

	Inline Python





	Other Parameters
	Other External Parameters

	Other Internal Parameters





	Problem Type Parameters
	Shock Tube (1: unigrid and AMR)

	Wave Pool (2)

	Shock Pool (3: unigrid 2D, AMR 2D and unigrid 3D)

	Double Mach Reflection (4)

	Shock in a Box (5)

	Implosion (6)

	Sedov Blast (7)

	Kelvin-Helmholtz Instability (8)

	2D/3D Noh Problem (9)

	Rotating Cylinder (10)

	Radiating Shock (11)

	Free Expansion (12)

	Rotating Sphere (14)

	Zeldovich Pancake (20)

	Pressureless Collapse (21)

	Adiabatic Expansion (22)

	Test Gravity (23)

	Spherical Infall (24)

	Test Gravity: Sphere (25)

	Gravity Equilibrium Test (26)

	Collapse Test (27)

	Test Gravity Motion (28)

	Test Orbit (29)

	Cosmology Simulation (30)

	Isolated Galaxy Evolution (31)

	Shearing Box Simulation (35)

	Supernova Restart Simulation (40)

	Photon Test (50)

	Turbulence Simulation with Stochastic Forcing (59)

	Turbulence Simulation (60)

	Protostellar Collapse (61)

	Cooling Test (62)

	3D Collapse Test (101)

	1D Spherical Collapse Test (102)

	Hydro and MHD Turbulence Simulation (106)

	Put Sink from Restart (107)

	Cluster Cooling Flow (108)

	1D MHD Test (200)

	2D MHD Test (201)

	3D MHD Collapse Test (202)

	MHD Turbulent Collapse Test (203)

	Galaxy Disk (207)

	AGN Disk (207)

	CR Shock Tube (250: unigrid and AMR)

	Poisson Solver Test (300)

	Radiation-Hydrodynamics Test 1 - Constant Fields (400)

	Radiation-Hydrodynamics Test 2 - Streams (401)

	Radiation-Hydrodynamics Test 3 - Pulse (402)

	Radiation-Hydrodynamics Test 4 - Grey Marshak Test (403)

	Radiation-Hydrodynamics Test 5 - Radiating Shock (404/405)

	Radiation-Hydrodynamics Tests 10 and 11 - I-Front Tests (410/411)

	Radiation-Hydrodynamics Test 12 - HI ionization of a clump (412)

	Radiation-Hydrodynamics Test 13 - HI ionization of a steep region (413)

	Radiation-Hydrodynamics Tests 14/15 - Cosmological HI ionization (414/415)
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Initialization Parameters


	TopGridRank (external)

	This specifies the dimensionality of the root grid and by extension
the entire hierarchy. It should be 1,2 or 3. Default: none

	TopGridDimensions (external)

	This is the dimension of the top or root grid. It should consist of
1, 2 or 3 integers separated by spaces. For those familiar with the
KRONOS or ZEUS method of specifying dimensions, these values do not
include ghost or boundary zones. A dimension cannot be less than 3
zones wide and more than MAX_ANY_SINGLE_DIRECTION -
NumberOfGhostZones*2. MAX_ANY_SINGLE_DIRECTION is defined in
fortran.def. Default: none

	DomainLeftEdge, DomainRightEdge (external)

	These float values specify the two corners of the problem domain
(in code units). The defaults are: 0 0 0 for the left edge and 1 1
1 for the right edge.

	LeftFaceBoundaryCondition, RightFaceBoundaryCondition (external)

	These two parameters each consist of vectors of integers (of length
TopGridRank). They specify the boundary conditions for the top grid
(and hence the entire hierarchy). The first integer corresponds to
the x-direction, the second to the y-direction and the third, the
z-direction. The possible values are: 0 - reflecting, 1 - outflow,
2 - inflow, 3 - periodic, 4 - shearing. For inflow, the inflow
values can be set through the next parameter, or more commonly are
controlled by problem-specific code triggered by the ProblemType.
For shearing boundaries, the boundary pair in another direction
must be periodic. Note that self gravity will not be consistent
with shearing boundary conditions. Default: 0 0 0

	BoundaryConditionName (external)

	While the above parameters provide an easy way to set an entire
side of grid to a given boundary value, the possibility exists to
set the boundary conditions on an individual cell basis. This is
most often done with problem specific code, but it can also be set
by specifying a file which contains the information in the
appropriate format. This is too involved to go into here. Default:
none

	InitialTime (internal)

	The time, in code units, of the current step. For cosmology the
units are in free-fall times at the initial epoch (see Enzo Output Formats). Default: generally 0, depending on problem

	Initialdt (internal)

	The timestep, in code units, for the current step. For cosmology
the units are in free-fall times at the initial epoch (see Enzo Output Formats). Default: generally 0, depending on problem

	Unigrid (external)

	This parameter should be set to 1 (TRUE) for large cases–AMR as
well as non-AMR–where the root grid is 5123 or larger.
This prevents initialization under subgrids at start up, which is
unnecessary in cases with simple non-nested initial conditions.
Unigrid must be set to 0 (FALSE) for cases with nested initial
conditions. Default: 0 (FALSE). See also ParallelRootGridIO in I/O Parameters.

	UnigridTranspose (external)

	This parameter governs the fast FFT bookkeeping for Unigrid runs.
Does not work with isolated gravity.  Option 0 is the slowest of
the methods.  Option 1 is an aggressive version that is
memory-intensive.  Option 2 tries to conserve memory at the
expense of performance.  See also Unigrid above.  Default: 2.

	MaximumTopGridTimeStep (external)

	This parameter limits the maximum timestep on the root grid.  Default: huge_number.

	ShearingVelocityDirection (external)

	Select direction of shearing boundary. Default is x direction. Changing this is probably not a good idea.

	AngularVelocity (external)

	The value of the angular velocity in the shearing boundary.
Default: 0.001

	VelocityGradient (external)

	The value of the per code length gradient in the angular velocity
in the shearing boundary. Default: 1.0

	GridVelocity (external)

	The whole computational domain will have this velocity.  Experimental.  Default: 0 0 0

	StringKick (external)

	While this parameter was initially designed to describe the kick by cosmic strings in CosmologySimulation, it can be used to model the velocity (in km/s) that the baryons should move relative to dark matter at the initial redshift, in order to study the effect discussed by Tseliakhovich & Hirata (astro-ph:1005.2416). Default: 0

	StringKickDimension (external)

	This parameter is used to control the orthogonal direction of the flow.  Default: 0 (x-axis)

	MemoryLimit (external)

	If the memory usage on a single MPI process exceeds this number, then the simulation will halt after outputting.  Only used when the compile-time define MEM_TRACE is used. Default: 4e9

	HydrogenFractionByMass (external)

	This parameter is used to set up initial conditions in some test problems.  Default: 0.76

	DeuteriumToHydrogenRatio (external)

	This parameter is used to set up initial conditions in some test problems.  Default: 2.0*3.4e-5 (Burles & Tytler 1998, the parameter here is by mass, so multiply by 2)

	SolarMetalFractionByMass (external)

	This parameter is used to set up initial conditions in some test problems. Do NOT change this parameter unless you know exactly what you are doing. Default: 0.02041

	CoolDataIh2co (external)

	Whether to include molecular hydrogen cooling.  Do NOT change this parameter unless you know exactly what you are doing.  Default: 1

	CoolDataIpiht (external)

	Whether to include photoionization heating.  Do NOT change this parameter unless you know exactly what you are doing.  Default: 1

	CoolDataCompXray (external)

	Do NOT change this parameter unless you know exactly what you are doing.  Saved to CoolData.comp_xray. Default: 0

	CoolDataTempXray (external)

	Do NOT change this parameter unless you know exactly what you are doing.  Saved to CoolData.temp_xray. Default: 0

	NumberOfTemperatureBins (external)

	Do NOT change this parameter unless you know exactly what you are doing. Default: 600

	TemperatureStart (external)

	Do NOT change this parameter unless you know exactly what you are doing. Default: 10

	TemperatureEnd (external)

	Do NOT change this parameter unless you know exactly what you are doing. Default: 1e8

	ExternalBoundaryIO (external)

	not recommended for use at this point. Only works if compiled with ooc-boundary-yes.  Default: 0

	ExternalBoundaryTypeIO (external)

	not recommended for use at this point. Default: 0

	ExternalBoundaryValueIO (external)

	not recommended for use at this point. Default: 0

	SimpleConstantBoundary (external)

	not recommended for use at this point. Default: 0
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I/O Parameters


General

There are three ways to specify the frequency of outputs:
time-based, cycle-based (a cycle is a top-grid timestep), and, for
cosmology simulations, redshift-based. There is also a shortened
output format intended for visualization (movie format). Please
have a look at Controlling Enzo data output for more information.


	dtDataDump (external)

	The time interval, in code units, between time-based outputs. A
value of 0 turns off the time-based outputs. Default: 0

	dtInterpolatedDataDump (external)

	The time interval, in code units, between time-based interpolated outputs. A
value of 0 turns off the time-based outputs. Default: 0

	CycleSkipDataDump (external)

	The number of cycles (top grid timesteps) between cycle-based
outputs. Zero turns off the cycle-based outputs. Default: 0

	SubcycleSkipDataDump (external)

	The number of subcycles between subcycle-based
outputs. Zero turns off the subcycle-based outputs. Default: 0

	dtTracerParticleDump (external)

	The time interval, in code units, between time-based tracer particle outputs (defined in ComputeRandomForcingNormalization.C). A
value of 0 turns off this output. Default: 0

	DataDumpName (external)

	The base file name used for both time and cycle based outputs.
Default: data

	RedshiftDumpName (external)

	The base file name used for redshift-based outputs (this can be
overridden by the CosmologyOutputRedshiftName parameter). Normally
a four digit identification number is appended to the end of this
name, starting from 0000 and incrementing by one for every output.
This can be over-ridden by including four consecutive R’s in the
name (e.g. RedshiftRRRR) in which case the an identification number
will not be appended but the four R’s will be converted to a
redshift with an implied decimal point in the middle (i.e. z=1.24
becomes 0124). Default: RedshiftOutput

	TracerParticleDumpName (external)

	The base file name used for tracer particle outputs.
Default:

	TracerParticleDumpDir (external)

	The dir name used for tracer particle outputs.
Default:

	dtRestartDump

	Reserved for future use.

	dtHistoryDump

	Reserved for future use.

	CycleSkipRestartDump

	Reserved for future use.

	CycleSkipHistoryDump

	Reserved for future use.

	RestartDumpName

	Reserved for future use.

	HistoryDumpName

	Reserved for future use.

	CosmologyOutputRedshift[NNNN] (external)

	The time and cycle-based outputs occur regularly at constant
intervals, but the redshift outputs are specified individually.
This is done by the use of this statement, which sets the output
redshift for a specific identification number (this integer is
between 0000 and 9999 and is used in forming the name). So the
statement CosmologyOutputRedshift[1] = 4.0 will cause an output to
be written out at z=4 with the name RedshiftOutput0001 (unless the
base name is changed either with the previous parameter or the next
one). This parameter can be repeated with different values for the
number (NNNN) Default: none

	CosmologyOutputRedshiftName[NNNN] (external)

	This parameter overrides the parameter RedshiftOutputName for this
(only only this) redshift output. Can be used repeatedly in the
same manner as the previous parameter. Default: none

	FileDirectedOutput

	If this parameter is set to 1, whenever the finest level has finished
evolving Enzo will check for new signal files to output.  (See
Force Output Now.)  Default 1.

	TracerParticleOn

	This parameter is used to set the velocities of the tracer
particles equal to the gas velocities in the current cells.
Tracer particles are massless and can be used to output values of
the gas as they advect with the fluid.  Default: 0

	TracerParticleOutputVelocity

	This parameter is used to output tracer particle velocity as well
as position, density, and temperature.  Default: 0

	OutputFirstTimeAtLevel (external)

	This forces Enzo to output when a given level is reached, and at
every level thereafter. Default is 0 (off). User can usefully
specify anything up to the maximum number of levels in a given
simulation.

	ParallelRootGridIO (external)

	Normally for the mpi version, the root grid is read into the root
processor and then partitioned to separate processors using communication.
However, for
very large root grids (e.g. 5123), the root processor
may not have enough memory. If this toggle switch is set on (i.e.
to the value 1), then each processor reads its own section of the
root grid. More I/O is required (to split up the grids and
particles), but it is more balanced in terms of memory.
ParallelRootGridIO and ParallelParticleIO MUST be set to 1 (TRUE)
for runs involving > 64 cpus! Default: 0 (FALSE).
See ParallelParticleIO in Particle Parameters.
See also Unigrid in Initialization Parameters.

	OutputTemperature (external)

	Set to 1 if you want to output a temperature field in the datasets.
Always 1 for cosmology simulations. Default: 0.

	OutputCoolingTime (external)

	Set to 1 if you want to output the cooling time in the datasets.
Default: 0.

	OutputSmoothedDarkMatter (external)

	Set to 1 if you want to output a dark matter density field,
smoothed by an SPH kernel. Set to 2 to also output smoothed dark
matter velocities and velocity dispersion. Set to 0 to turn off.
Default: 0.

	SmoothedDarkMatterNeighbors (external)

	Number of nearest neighbors to smooth dark matter quantities over.
Default: 32.

	OutputGriddedStarParticle (external)

	Set to 1 or 2 to write out star particle data gridded onto mesh.
This will be useful e.g. if you have lots of star particles in a
galactic scale simulation. 1 will output just
star_particle_density; and 2 will dump
actively_forming_stellar_mass_density, SFR_density, etc.
Default: 0.

	PopIIIOutputOnFeedback (external)

	Writes an interpolated output when a Pop III is formed or goes
supernova.  Default: 0

	OutputOnDensity (external)

	Should interpolated outputs be generated at varying peak density?
Default: 0

	StartDensityOutput (external)

	The first density (in log g/cc) at which to output.

	CurrentDensityOutput (internal)

	The most recent density at which output was generated.

	IncrementDensityOutput (external)

	After a density-directed output, how much should the density be increased by?  Default: 999

	ComputePotential (external)

	When turned on, the gravitational potential is computed and stored in memory.  Always done when SelfGravity is on.  Default: 0

	WritePotential (external)

	When turned on, the gravitational potential is written to file.  Default: 0

	WriteGhostZones (external)

	Should ghost zones be written to disk?  Default: 0

	ReadGhostZones (external)

	Are ghost zones present in the files on disk?  Default: 0

	VelAnyl (external)

	Set to 1 if you want to output the divergence and vorticity of
velocity. Works in 2D and 3D.

	BAnyl (external)

	Set to 1 if you want to output the divergence and vorticity of
Bfield. Works in 2D and 3D.

	ExtractFieldsOnly (external)

	Used for extractions (enzo -x ...) when only field data are needed
instead of field + particle data. Default is 1 (TRUE).

	XrayLowerCutoffkeV, XrayUpperCutoffkeV, XrayTableFileName (external)

	These parameters are used in 2D projections (enzo -p ...). The
first two specify the X-ray band (observed at z=0) to be used, and
the last gives the name of an ascii file that contains the X-ray
spectral information. A gzipped version of this file good for
bands within the 0.1 - 20 keV range is provided in the
distribution in input/lookup_metal0.3.data. If these
parameters are specified, then the second field is replaced with
integrated emissivity along the line of sight in units of 10-23 erg/cm2/s. Default: XrayLowerCutoffkeV =
0.5, XrayUpperCutoffkeV = 2.5.

	ParticleTypeInFile (external)

	Output ParticleType to disk?  Default: 1

	OutputParticleTypeGrouping (external)

	In the grid HDF5 groups, particles are sorted by type, and a reference is created to indicate which particle index range corresponds to each type.  Default: 0

	HierarchyFileInputFormat (external)

	See Controlling the Hierarchy File Output Format.

	HierarchyFileOutputFormat (external)

	See Controlling the Hierarchy File Output Format.

	TimingCycleSkip (external)

	Controls how many cycles to skip when timing information is collected, reduced, and written out to performance.out.  Default: 1

	DatabaseLocation (external)

	(Not recommended for use at this point)  Where should the SQLite database of outputs be placed?

	CubeDumpEnabled (external)

	not recommended for use at this point. Default: 0

	CubeDump[] (external)

	not recommended for use at this point

	LocalDir (external)

	See Controlling Enzo data output.

	GlobalDir (external)

	See Controlling Enzo data output.






Stopping Parameters


	StopTime (external)

	This parameter specifies the time (in code units) when the
calculation will halt. For cosmology simulations, this variable is
automatically set by CosmologyFinalRedshift. No default.

	StopCycle (external)

	The cycle (top grid timestep) at which the calculation stops. A
value of zero indicates that this criterion is not be used.
Default: 100,000

	StopFirstTimeAtLevel (external)

	Causes the simulation to immediately stop when a specified level is
reached. Default value 0 (off), possible values are levels 1
through maximum number of levels in a given simulation.

	StopFirstTimeAtDensity (external)

	Causes the simulation to immediately stop when the maximum gas
density reaches this value.  In units of proper g/cm^3.  Not used if less
than or equal to zero. Default: 0.0

	StopFirstTimeAtMetalEnrichedDensity (external)

	Causes the simulation to immediately stop when the maximum gas
density with above some metallicity, specified by
EnrichedMetalFraction, is reached.  In units of g/cm^3.  Not
used if less than or equal to zero.  Default: 0.0

	EnrichedMetalFraction (external)

	See StopFirstTimeAtMetalEnrichedDensity.  In units of absolute
metal fraction.  Default: 1e-8

	NumberOfOutputsBeforeExit (external)

	After this many datadumps have been written, the code will exit.  If
set to 0 (default), this option will not be used.  Default: 0.

	StopCPUTime (external)

	Causes the simulation to stop if the wall time exceeds StopCPUTime.
The simulation will output if the wall time after the next
top-level timestep will exceed StopCPUTime, assuming that the wall
time elapsed during a top-level timestep the same as the previous
timestep. In units of seconds. Default: 2.592e6 (30 days)

	ResubmitOn (external)

	If set to 1, the simulation will stop if the wall time will exceed
StopCPUTime within the next top-level timestep and run a shell
script defined in ResubmitCommand that should resubmit the job
for the user. Default: 0.

	ResubmitCommand (external)

	Filename of a shell script that creates a queuing (e.g. PBS)
script from two arguments, the number of processors and parameter
file.  This script is run by the root processor when stopping with
ResubmitOn. An example script can be found in
input/resubmit.sh. Default: (null)






Streaming Data Format


	NewMovieLeftEdge, NewMovieRightEdge (external)

	These two parameters control the region for which the streaming
data are written. Default: DomainLeftEdge and DomainRightEdge.

	MovieSkipTimestep (external)

	Controls how many timesteps on a level are skipped between outputs
in the streaming data. Streaming format is off if this equals
INT_UNDEFINED. Default: INT_UNDEFINED

	Movie3DVolume (external)

	Set to 1 to write streaming data as 3-D arrays. This should always
be set to 1 if using the streaming format. A previous version had
2D maximum intensity projections, which now defunct. Default: 0.

	MovieVertexCentered (external)

	Set to 1 to write the streaming data interpolated to vertices. Set
to 0 for cell-centered data. Default: 0.

	NewMovieDumpNumber (internal)

	Counter for streaming data files. This should equal the cycle
number.

	MovieTimestepCounter (internal)

	Timestep counter for the streaming data files.

	MovieDataField (external)

	A maximum of 6 data fields can be written in the streaming format.
The data fields are specified by the array element of
BaryonField, i.e. 0 = Density, 7 = HII
Density. For writing temperature, a special value of 1000 is used.
This should be improved to be more transparent in which fields will
be written. Any element that equals INT_UNDEFINED indicates no
field will be written. Default: INT_UNDEFINED x 6

	NewMovieParticleOn (external)

	Set to 1 to write all particles in the grids. Set to 2 to write
ONLY particles that aren’t dark matter, e.g. stars. Set to 3/4 to
write ONLY particles that aren’t dark matter into a file separate
from the grid info. (For example, MoviePackParticle_P000.hdf5,
etc. will be the file name; this will be very helpful in speeding
up the access to the star particle data, especially for the
visualization or for the star particle. See AMRH5writer.C) Set to 0
for no particle output. Default: 0.






Simulation Identifiers and UUIDs

These parameters help to track, identify and group datasets. For reference,
Universally Unique Identifiers [http://en.wikipedia.org/wiki/Universally_Unique_Identifier] (UUIDs) are
opaque identifiers using random 128-bit numbers, with an extremely low chance
of collision. (See Simulation Names and Identifiers for a longer
description of these parameters.)


	MetaDataIdentifier (external)

	This is a character string without spaces (specifically, something
that can be picked by “%s”), that can be defined in a parameter
file, and will be written out in every following output, if it is
found.

	MetaDataSimulationUUID (internal)

	A UUID that will be written out in all of the following outputs.
Like MetaDataIdentifier, an existing UUID will be kept, but if one
is not found, and new one will be generated.

	MetaDataDatasetUUID (internal)

	A UUID created for each specific output.

	MetaDataRestartDatasetUUID (internal)

	If a MetaDataDatasetUUID UUID is found when the parameter file is
read in, it will written to the following datasets. This is used to
track simulations across restarts and parameter adjustments.

	MetaDataInitialConditionsUUID (internal)

	This is similar to MetaDataRestartDatasetUUID, except it’s used to
track which initial conditions were used.
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Hierarchy Control Parameters


	StaticHierarchy (external)

	A flag which indicates if the hierarchy is static (1) or dynamic
(0). In other words, a value of 1 takes the A out of AMR. Default:
1

	RefineBy (external)

	This is the refinement factor between a grid and its subgrid. For
cosmology simulations, we have found a ratio of 2 to be most useful.
Default: 4

	MaximumRefinementLevel (external)

	This is the lowest (most refined) depth that the code will produce.
It is zero based, so the total number of levels (including the root
grid) is one more than this value. Default: 2

	CellFlaggingMethod (external)

	The method(s) used to specify when a cell should be refined. This
is a list of integers, up to 9, as described by the following
table. The methods combine in an “OR” fashion: if any of them
indicate that a cell should be refined, then it is flagged. For
cosmology simulations, methods 2 and 4 are probably most useful.
Note that some methods have additional parameters which are
described below. For more information about specific methods, see the
method paper. Default: 1







	CellFlaggingMethod
	Description




	1
	Refine by slope


	2
	Refine by baryon mass


	3
	Refine by shocks


	4
	Refine by particle mass


	5
	Refine by baryon overdensity


	6
	Refine by Jeans length


	7
	Refine if (cooling time < cell width/sound speed)


	8
	Refine by must-refine particles


	9
	Refine by shear


	10
	Refine by optical depth (in RT calculation)


	11
	Refine by resistive length (in MHD calculation)


	12
	Refine by defined region “MustRefineRegion”


	13
	Refine by metallicity


	14
	Refine by shockwaves (found w/shock finder)


	15
	Refine by normalized second derivative


	16
	Refine by Jeans length from the inertial tensor


	19
	Refine by metal mass


	100
	Avoid refinement based on ForbiddenRefinement field


	101
	Avoid refinement in regions defined in “AvoidRefineRegion”







	RefineRegionLeftEdge, RefineRegionRightEdge (external)

	These two parameters control the region in which refinement is
permitted. Each is a vector of floats (of length given by the
problem rank) and they specify the two corners of a volume.
Default: set equal to DomainLeftEdge and DomainRightEdge.

	RefineRegionAutoAdjust (external)

	This is useful for multiresolution simulations with particles in
which the particles have varying mass. Set to 1 to automatically
adjust the refine region at root grid timesteps to only contain
high-resolution particles. This makes sure that the fine regions do
not contain more massive particles which may lead to small
particles orbiting them or other undesired outcomes. Setting to any
integer (for example, 3) will make AdjustRefineRegion to work at
(RefineRegionAutoAdjust-1)th level timesteps because sometimes the
heavy particles are coming into the fine regions too fast that you
need more frequent protection. Default: 0.

	RefineRegionTimeType (external)

	If set, this controls how the first column of a refinement region
evolution file (see below) is interpreted, 0 for code time, 1 for
redshift. Default: -1, which is equivalent to ‘off’.

	RefineRegionFile (external)

	The name of a text file containing the corners of the time-evolving
refinement region. The lines in the file change the values of
RefineRegionLeft/RightEdge during the course of the simulation, and
the lines are ordered in the file from early times to late times.
The first column of data is the time index (in code units or
redshift, see the parameter above) for the next six columns, which
are the values of RefineRegionLeft/RightEdge. For example, this
might be two lines from the text file when time is indexed by
redshift:

0.60 0.530 0.612 0.185 0.591 0.667 0.208
0.55 0.520 0.607 0.181 0.584 0.653 0.201





In this case, the refinement region stays at the z=0.60 value
until z=0.55, when the box moves slightly closer to the (0,0,0)
corner. There is a maximum of 300 lines in the file and there is no
comment header line. Default: None.



	MinimumOverDensityForRefinement (external)

	These float values (up to 9) are used if the
CellFlaggingMethod is 2, 4 or 5. For method 2 and 4, the value is the density (baryon or particle), in code units, above which refinement occurs. When using method 5, it becomes rho [code] - 1. The elements in this array must match those in CellFlaggingMethod. Therefore, if CellFlaggingMethod = 1 4 9 10, MinimumOverDensityForRefinement = 0 8.0 0 0.

In practice, this value is converted into a mass by
multiplying it by the volume of the top grid cell. The result is
then stored in the next parameter (unless that is set directly in
which case this parameter is ignored), and this defines the mass
resolution of the simulation. Note that the volume is of a top grid
cell, so if you are doing a multi-grid initialization, you must
divide this number by r(d*l) where r is the refinement
factor, d is the dimensionality and l is the (zero-based) lowest
level. For example, for a two grid cosmology setup where a cell should be
refined whenever the mass exceeds 4 times the mean density of the
subgrid, this value should be 4 / (2(3*1)) = 4 / 8 =
0.5. Keep in mind that this parameter has no effect if it is
changed in a restart output; if you want to change the refinement
mid-run you will have to modify the next parameter. Up to 9
numbers may be specified here, each corresponding to the respective
CellFlaggingMethod. Default: 1.5



	MinimumMassForRefinement (internal)

	This float is usually set by the parameter above and so is labeled
internal, but it can be set by hand. For non-cosmological simulations, it can be the easier refinement criteria to specify. It is the mass above
which a refinement occurs if the CellFlaggingMethod is
appropriately set. For cosmological simulations, it is specified in units such
that the entire mass in the computational volume is 1.0, otherwise it is in code units. There are 9 numbers here again, as per the
above parameter. Default: none

	MinimumMassForRefinementLevelExponent (external).

	This parameter modifies the behaviour of the above parameter. As it
stands, the refinement based on the MinimumMassForRefinement
(hereafter Mmin) parameter is complete Lagrangian. However, this
can be modified. The actual mass used is
Mmin*r(l*alpha) where r is the refinement factor, l is
the level and alpha is the value of this parameter
(MinimumMassForRefinementLevelExponent). Therefore a negative value
makes the refinement super-Lagrangian, while positive values are
sub-Lagrangian. There are up to 9 values specified here, as per
the above two parameters. Default: 0.0

	SlopeFlaggingFields (external)

	If CellFlaggingMethod is 1, and you only want to refine on the
slopes of certain fields then you can enter the
Field Type IDs of the fields you want,
separating the IDs with a space. Up to 7 Field Type IDs can be
specified. Default: Refine on slopes of all fields.

	MinimumSlopeForRefinement (external)

	If CellFlaggingMethod is 1, then local gradients are used as the
refinement criteria. All variables are examined and the relative
slope is computed: abs(q(i+1)-q(i-1))/q(i). Where this value
exceeds this parameter, the cell is marked for refinement. This
causes problems if q(i) is near zero. This is a single integer (as
opposed to the list of five for the above parameters). Entering
multiple numbers here correspond to the fields listed in
SlopeFlaggingFields. Default: 0.3

	MinimumPressureJumpForRefinement (external)

	If refinement is done by shocks, then this is the minimum
(relative) pressure jump in one-dimension to qualify for a shock.
The definition is rather standard (see Colella and Woodward’s PPM
paper for example) Default: 0.33

	MinimumEnergyRatioForRefinement (external)

	For the dual energy formalism, and cell flagging by
shock-detection, this is an extra filter which removes weak shocks
(or noise in the dual energy fields) from triggering the shock
detection. Default: 0.1

	MinimumShearForRefinement (external)

	It is the minimum shear above which a refinement occurs if the CellFlaggingMethod is appropriately set. Default: 0

	OldShearMethod (external)

	If using the shear refinement criterion, setting this variable to 1 enables
the old method for calculating the shear criterion, which actually
calculates it based on shear and vorticity and makes some assumptions
about the simulations (c_s=1, etc.).  However, this is necessary
if you want to reproduce some of the old enzo results
(e.g. Kritsuk et al. 2006).  Default: 0

	MetallicityRefinementMinMetallicity (external)

	For method 13 (metallicity refinement), this is the threshold
metallicity (in units of solar metallicity) above which cells must
be refined to a minimum level of
MetallicityRefinementMinLevel.  For method 19 (metal mass),
this flags cells for refinement when the metal mass is above the
necessary baryon mass (method 2) for refinement multiplied by this
parameter.  Behaves similarly to refinement by baryon mass but
focuses on metal-enriched regions.  In units of solar metallicity.
Default: 1.0e-5

	MetallicityRefinementMinLevel (external)

	Sets the minimum level (maximum cell size) to which a cell enriched
with metal above a level set by MetallicityRefinementMinMetallicity
will be refined. This can be set to any level up to and including
MaximumRefinementLevel. (No default setting)

	MetallicityRefinementMinDensity (external)

	It is the minimum density above which a refinement occurs when the cells are refined on metallicity.  Default: FLOAT_UNDEFINED

	ShockwaveRefinementMinMach (external)

	The minimum Mach number required to refine a level when using ShockwaveRefinement. Default: 1.3

	ShockwaveRefinementMinVelocity (external)

	The minimum shock velocity required to refine a level when using ShockwaveRefinement. Default: 1.0e7 (cm/s)

	ShockwaveRefinementMaxLevel (external)

	The maximum level to refine to using the ShockwaveRefinement criteria. Default: 0 (not used)

	SecondDerivativeFlaggingFields (external)

	The field indices (list of up to 7) that are used for the normalized second
derivative refinement criteria. Default: INT_UNDEFINED

	MinimumSecondDerivativeForRefinement (external)

	The value of the second derivative above which a cell will be flagged for
refinement. Each value in this list (of up to 7 values) should be between
0.0 and 1.0.  Values between 0.3-0.8 are recommended.  Default: 0.3

	SecondDerivativeEpsilon (external)

	Used to avoid refining around oscillations/fluctuations in the normalized
second derivative refinement method.  The higher the value, the more it
will filter out.  For fluid instability simulations, a value of ~0.01 is
good.  For full-physics simulations, values around ~0.2 are recommended. Be
aware that fluctuations on this scale in initial conditions may cause
immediate refinement to the maximum level.  Default: 1.0e-2

	RefineByJeansLengthSafetyFactor (external)

	If the Jeans length refinement criterion (see CellFlaggingMethod)
is being used, then this parameter specifies the number of cells
which must cover one Jeans length. Default: 4

	JeansRefinementColdTemperature (external)

	If the Jeans length refinement criterion (see CellFlaggingMethod)
is being used, and this parameter is greater than zero, this
temperature will be used in all cells when calculating the Jeans
length.  If it is less than or equal to zero, it will be used as a
temperature floor when calculating the Jeans length. Default: -1.0

	RefineByResistiveLengthSafetyFactor (external)

	Resistive length is defined as the curl of the magnetic field over
the magnitude of the magnetic field. We make sure this length is
covered by this number of cells. i.w. The resistive length in a MHD simulation should not be smaller than CellWidth * RefineByResistiveLengthSafetyFactor.  Default: 2.0

	MustRefineParticlesCreateParticles (external)

	This parameter will flag dark matter particles in cosmological
initial conditions as MustRefineParticles.  If CellFlaggingMethod
8 is set, AMR will be restricted to cells surrounding
MustRefineParticles.  There are several different modes for creating
MustRefineParticles with this parameter described below.  Further
information on how to use dark matter MustRefineParticles in
cosmological simulations can be found here (link).  Default: 0



1 - If the user specifies ``MustRefineParticlesLeftEdge`` and
    ``MustRefineParticlesRightEdge``, dark matter particles within the
    specified region are flagged.  Otherwise, the code looks for an ascii
    input file called MustRefineParticlesFlaggingList.in that contains a list
    of particle ids to be flagged.  The ids in this list must be sorted in
    acending order.
2 - For use with ellipsodial masking in MUSIC inititial conditions.  This
    setting uses traditional static grids for intermediate resolution levels.
    MUSIC will generate RefinementMask files and the ``ParticleTypeName``
    parameter should be set to the name of these files.
3 - Same as setting 2, except refinement on intermediate levels is not
    constrained by static grids.  Instead, refinement around dark matter
    particles is allowed down to the level of a particle's generation level.
    Refinement beyond this level is allowed around particles within the MUSIC
    ellipsoidal making region.






	MustRefineParticlesRefineToLevel (external)

	The maximum level on which MustRefineParticles are required to
refine to. Currently sink particles and MBH particles are required
to be sitting at this level at all times. Default: 0

	MustRefineParticlesRefineToLevelAutoAdjust (external)

	The parameter above might not be handy in cosmological simulations
if you want your MustRefineParticles to be refined to a certain
physical length, not to a level whose cell size keeps changing.
This parameter (positive integer in pc) allows you to do just that.
For example, if you set MustRefineParticlesRefineToLevelAutoAdjust
= 128 (pc), then the code will automatically calculate
MustRefineParticlesRefineToLevel using the boxsize and redshift
information. Default: 0 (FALSE)

	MustRefineParticlesMinimumMass (external)

	This was an experimental parameter to set a minimum for MustRefineParticles.  Default: 0.0

	MustRefineParticlesRegionLeftEdge (external)

	Bottom-left corner of a region in which dark matter particles are flagged
as MustRefineParticles in nested cosmological simulations.  To be used with
MustRefineParticlesCreateParticles = 1.  Default: 0.0 0.0 0.0

	MustRefineParticlesRegionRightEdge (external)

	Top-right corner of a region in which dark matter particles are flagged
as MustRefineParticles in nested cosmological simulations.  To be used with
MustRefineParticlesCreateParticles = 1.  Default: 0.0 0.0 0.0

	MustRefineRegionMinRefinementLevel (external)

	Minimum level to which the rectangular solid volume defined by
MustRefineRegionLeftEdge and MustRefineRegionRightEdge will be
refined to at all times. (No default setting)

	MustRefineRegionLeftEdge (external)

	Bottom-left corner of refinement region. Must be within the overall
refinement region. Default: 0.0 0.0 0.0

	MustRefineRegionRightEdge (external)

	Top-right corner of refinement region. Must be within the overall
refinement region. Default: 1.0 1.0 1.0

	StaticRefineRegionLevel[#] (external)

	This parameter is used to specify regions of the problem that are
to be statically refined, regardless of other parameters. This is mostly
used as an internal mechanism to keep the initial grid hierarchy in
place, but can be specified by the user. Up to 20 static regions
may be defined (this number set in macros_and_parameters.h), and
each static region is labeled starting from zero. For each static
refined region, two pieces of information are required: (1) the
region (see the next two parameters), and (2) the level at which
the refinement is to occurs (0 implies a level 1 region will always
exist). Default: none

	StaticRefineRegionLeftEdge[#], StaticRefineRegionRightEdge[#] (external)

	These two parameters specify the two corners of a statically
refined region (see the previous parameter). Default: none

	AvoidRefineRegionLevel[#] (external)

	This parameter is used to limit the refinement to this level in a
rectangular region.  Up to MAX_STATIC_REGIONS regions can be used.

	AvoidRefineRegionLeftEdge[#], AvoidRefineRegionRightEdge[#] (external)

	These two parameters specify the two corners of a region that
limits refinement to a certain level (see the previous
parameter). Default: none

	MultiRefineRegionGeometry[#] (external)

	This parameter (and the ones following) describe a physical region of the simulation box for which an
independent refinement maximum and minimum (separate from MaximumRefinementLevel) can be specified.

	MultiRefineRegionGeometry[#] controls the geometry of the refined volume. Currently implemented

	geometries are: (0) a rectangular region, (1) a ring of infinite height and (2) a cylinder of infinite
height. Up to 20 multi-refined regions may be defined (number the same as for StaticRefineRegion)
and each multi-refined region is labelled starting from zero. Default: -1 (no multi-regions)

	MultiRefineRegionLeftEdge[#], MultiRefineRegionRightEdge[#] (external)

	Used when MultiRefineRegionGeometry[#] = 0 and specifies the two corners in code units of a
rectagular multi-region with a given maximum and minimum refinement level. Default: none.

	MultiRefineRegionCenter[#] (external)

	Used when MultiRefineRegionGeometry[#] = 1 or 2 and specifies the center of the ring or cylinder
in code units. Default: none

	MultiRefineRegionRadius[#] (external)

	Used when MultiRefineRegionGeometry[#] = 1 or 2 and specifies the radius of the ring or cylinder
in code units. In the case of the ring, this marks the distance to the middle of the ring’s thickness.
The thickness is specified with MultiRefineRegionWidth. Default: none

	MultiRefineRegionWidth[#] (external)

	Used when MultiRefineRegionGeometry[#] = 1 and specifies the width (thickness) of the ring in
code units. Default: none

	MultiRefineRegionOrientation[#] (external)

	Used when MultiRefineRegionGeometry[#] = 1 or 2 and is a unit vector pointing along the vertical
direction of the ring or cylinder. Default: none.

	MultiRefineRegionStaggeredRefinement[#] (external)

	Used when MultiRefineRegionGeometry[#] = 1 or 2. To avoid a sharp change in refinement at the edge of
the ring or cylinder, the allowed refinement is staggered from the maximum allowed value outside the
region, MultiRefineRegionOuterMaximumLevel, to the maximum allowed refinement inside the region,
MultiRefineRegionMaximumLevel. This parameter is the length over which that staggering occurs in
code units. Default: 0.0 (no staggering)

	MultiRefineRegionMaximumLevel[#], MultiRefineRegionMinimumLevel[#] (external)

	Maximum and minimum allowed refinement inside the region. Default: MaximumRefinementLevel, 0

	MultiRefineRegionMaximumOuterLevel, MultiRefineRegionMinimumOuterLevel (external)

	Maximum and minimum allowed refinement outside all regions. Default: MaximumRefinementLevel, 0

	MinimumEfficiency (external)

	When new grids are created during the rebuilding process, each grid
is split up by a recursive bisection process that continues until a
subgrid is either of a minimum size or has an efficiency higher
than this value. The efficiency is the ratio of flagged zones
(those requiring refinement) to the total number of zones in the
grid. This is a number between 0 and 1 and should probably by
around 0.4 for standard three-dimensional runs. Default: 0.2

	NumberOfBufferZones (external)

	Each flagged cell, during the regridding process, is surrounded by
a number of zones to prevent the phenomenon of interest from
leaving the refined region before the next regrid. This integer
parameter controls the number required, which should almost always
be one. Default: 1

	MinimumSubgridEdge (external)

	The minimum length of the edge of a subgrid.  See Running Large Simulations. Default: 6

	MaximumSubgridSize (external)

	The maximum size (volume) of a subgrid.  See Running Large Simulations. Default: 32768

	CriticalGridRatio (external)

	Critical grid ratio above which subgrids will be split in half along their
long axis prior to being split by the second derivative of their
signature.  Default: 3.0

	SubgridSizeAutoAdjust (external)

	See Running Large Simulations.  Default: 1 (TRUE)

	OptimalSubgridsPerProcessor (external)

	See Running Large Simulations.  Default: 16

	LoadBalancing (external)

	Set to 0 to keep child grids on the same processor as their
parents. Set to 1 to balance the work on one level over all
processors. Set to 2 or 3 to load balance the grids but keep them
on the same node. Option 2 assumes grouped scheduling, i.e. proc #
= (01234567) reside on node (00112233) if there are 4 nodes. Option
3 assumes round-robin scheduling (proc = (01234567) -> node =
(01230123)). Set to 4 for load balancing along a Hilbert
space-filling curve on each level. See Running Large Simulations. Default: 1

	LoadBalancingCycleSkip (external)

	This sets how many cycles pass before we load balance the root
grids. Only works with LoadBalancing set to 2 or 3. NOT RECOMMENDED
for nested grid calculations. Default: 10

	LoadBalancingMinLevel (external)

	Load balance the grids in levels greater than this parameter.  Default: 0

	LoadBalancingMaxLevel (external)

	Load balance the grids in levels less than this parameter.  Default: MAX_DEPTH_OF_HIERARCHY

	ResetLoadBalancing (external)

	When restarting a simulation, this parameter resets the processor number of each root grid to be sequential.  All child grids are assigned to the processor of their parent grid.  Only implemented for LoadBalancing = 1.  Default = 0

	NumberOfRootGridTilesPerDimensionPerProcessor (external)

	Splits the root grid into 2^(dimensions*this parameter) grids per MPI process.  Default: 1

	UserDefinedRootGridLayout (external)

	A three element array.  Splits the root grid into N subgrids where N
is the product of the supplied values.  The first entry corresponds to the
number of root grid decompositions along the x axis of the simulation, the
second element the number of decompositions along the y axis, and the third
the number of decompositions along the z axis.

This parameter is only used if all three elements of the array are set to a
value different from the dummy default value.  If that is the case the root
grid will be manually decomposed and the value supplied for
NumberOfRootGridTilesPerDimensionPerProcessor will be ignored.  This is
most useful when an automatic root grid decomposition is inefficient (for
example, in a deeply nested isolated galaxy simulation).

This parameter should be used with caution since it is possible to get into
a situation where there are fewer grids than CPU cores.  Normally this can
never happen since there will always be at least one root grid tile for every
CPU.  Most simulations assume you will be running with as many root grid
tiles as CPUs - if you instead opt to reduce the number of root grid tiles
per CPU to a number less than one, Enzo might break in unpredictable ways.
Default: -99999 -99999 -99999



	FastSiblingLocatorEntireDomain (external)

	In zoom-in calculations, the fast sibling locator doesn’t need to search the entire domain.  Turning this parameter on restricts the finder to the inner nested grid.  Currently broken.  Default: 0

	MoveParticlesBetweenSiblings (external)

	During RebuildHierarchy, particles that have moved beyond the grid boundaries are moved to the correct grid.  Default: 1

	RebuildHierarchyCycleSkip (external)

	Set the number of cycles at a given level before rebuilding the hierarchy.  Example: RebuildHierarchyCycleSkip[1] = 4
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Gravity Parameters


General


	TopGridGravityBoundary (external)

	A single integer which specified the type of gravitational boundary
conditions for the top grid. Possible values are 0 for periodic and
1 for isolated (for all dimensions). The isolated boundary
conditions have not been tested recently, so caveat emptor.
Default: 0

	SelfGravity (external)

	This flag (1 - on, 0 - off) indicates if the baryons and particles
undergo self-gravity.

	SelfGravityGasOff (external)

	This parameter is used in conjuction with SelfGravity so that only particles contribute to potential, not gas. Default = False (i.e. gas does contribute)

	GravitationalConstant (external)

	This is the gravitational constant to be used in code units. For cgs units it
should be 4*pi*G. For cosmology, this value must be 1 for the
standard units to hold. A more detailed decription can be found at Enzo Internal Unit System. Default: 4*pi.

	GreensFunctionMaxNumber (external)

	The Green’s functions for the gravitational potential depend on the
grid size, so they are calculated on a as-needed basis. Since they
are often re-used, they can be cached. This integer indicates the
number that can be stored. They don’t take much memory (only the
real part is stored), so a reasonable number is 100. [Ignored in
current version]. Default: 1

	GreensFunctionMaxSize

	Reserved for future use.

	S2ParticleSize (external)

	This is the gravitational softening radius, in cell widths, in
terms of the S2 particle described by Hockney and Eastwood in their
book Computer Simulation Using Particles. A reasonable value is
3.0. [Ignored in current version]. Default: 3.0

	GravityResolution (external)

	This was a mis-guided attempt to provide the capability to increase
the resolution of the gravitational mesh. In theory it still works,
but has not been recently tested. Besides, it’s just not a good
idea. The value (a float) indicates the ratio of the gravitational
cell width to the baryon cell width. [Ignored in current version].
Default: 1

	PotentialIterations (external)

	Number of iterations to solve the potential on the subgrids. Values
less than 4 sometimes will result in slight overdensities on grid
boundaries. Default: 4.

	MaximumGravityRefinementLevel (external)

	This is the lowest (most refined) depth that a gravitational
acceleration field is computed. More refined levels interpolate
from this level, provided a mechanism for instituting a minimum
gravitational smoothing length. Default: MaximumRefinementLevel
(unless HydroMethod is ZEUS and radiative cooling is on, in which
case it is MaximumRefinementLevel - 3).

	MaximumParticleRefinementLevel (external)

	This is the level at which the dark matter particle contribution to
the gravity is smoothed. This works in an inefficient way (it
actually smoothes the particle density onto the grid), and so is
only intended for highly refined regions which are nearly
completely baryon dominated. It is used to remove the discreteness
effects of the few remaining dark matter particles. Not used if set
to a value less than 0. Default: -1

	ParticleSubgridDepositMode (external)

	This parameter controls how particles stored in subgrid are deposited
into the current grid.  Options are:




	0 (CIC_DEPOSIT) - This is a second-order, cloud-in-cell deposition

	method in which the cloud size is equal to the cell size in
the target grid (particles are in source grid, deposited into
target grid).  This method preserves the correct center-of-mass
for a single particle but smears out boundaries and can result
in small artifacts for smooth particle distributions (e.g.
nested cosmological simulations with low perturbations).

	1 (CIC_DEPOSIT_SMALL) - This is also a CIC method, but the cloud

	size is taken to be the cell size in the source grid, so for
subgrids, the cloud is smaller than the grid size.  This
is an attempt to compromise between the other two methods.

	2 (NGP_DEPOSIT) - This uses a first order, nearest-grid-point

	method to deposit particle mass.  It does not preserve center-
of mass position and so for single particle results in noisy
accelerations.  However, it does correctly treat nested
cosmology simulations with low initial perturbations.






Default: 1






	BaryonSelfGravityApproximation (external)

	This flag indicates if baryon density is derived in a strange,
expensive but self-consistent way (0 - off), or by a completely
reasonable and much faster approximation (1 - on). This is an
experiment gone wrong; leave on. Well, actually, it’s important for
very dense structures as when radiative cooling is turned on, so
set to 0 if using many levels and radiative cooling is on [ignored
in current version]. Default: 1






External Gravity Source

These parameters set up an external static background gravity source that is
added to the acceleration field for the baryons and particles.


	PointSourceGravity (external)

	This parameter indicates that there is to be a
(constant) gravitational field with a point source profile (PointSourceGravity =
1) or NFW profile (PointSourceGravity = 2). Default: 0

	PointSourceGravityConstant (external)

	If PointSourceGravity = 1, this is the magnitude of the point
source acceleration at a distance of 1
length unit (i.e. GM in code units). If PointSourceGravity =
2, then it takes the mass of the dark matter halo in CGS
units. ProblemType = 31 (galaxy disk simulation) automatically calculates
values for PointSourceGravityConstant and
PointSourceGravityCoreRadius. Default: 1

	PointSourceGravityCoreRadius (external)

	For PointSourceGravity = 1, this is the radius inside which
the acceleration field is smoothed in code units. With PointSourceGravity =
2, it is the scale radius, rs, in CGS units (see Navarro, Frank & White,
1997). Default: 0

	PointSourceGravityPosition (external)

	If the PointSourceGravity flag is turned on, this parameter
specifies the center of the point-source gravitational field in
code units. Default: 0 0 0

	ExternalGravity (external)

	This fulfills the same purpose as PointSourceGravity but is
more aptly named. ExternalGravity = 1 turns on an alternative
implementation of the NFW profile with properties
defined via the parameters HaloCentralDensity, HaloConcentration and HaloVirialRadius. Boxsize is assumed to be 1.0 in this case. ExternalGravity = 10 gives a gravitational field defined by the logarithmic potential in Binney & Tremaine, corresponding to a disk with constant circular velocity.  Default: 0

	ExternalGravityConstant (external)

	If ExternalGravity = 10, this is the circular velocity of the disk in code units. Default: 0.0

	ExternalGravityDensity

	Reserved for future use.

	ExternalGravityPosition (external)

	If ExternalGravity = 10, this parameter specifies the center of the gravitational field in code units. Default: 0 0 0

	ExternalGravityOrientation (external)

	For ExternalGravity = 10, this is the unit vector of the disk’s angular momentum (e.g. a disk whose face-on view is oriented in the x-y plane would have ExternalGravityOrientation = 0 0 1). Default: 0 0 0

	ExternalGravityRadius (external)

	If ExternalGravity = 10, this marks the inner radius of the disk in code units within which the velocity drops to zero. Default: 0.0

	UniformGravity (external)

	This flag (1 - on, 0 - off) indicates if there is to be a uniform
gravitational field. Default: 0

	UniformGravityDirection (external)

	This integer is the direction of the uniform gravitational field: 0
- along the x axis, 1 - y axis, 2 - z axis. Default: 0

	UniformGravityConstant (external)

	Magnitude (and sign) of the uniform gravitational acceleration.
Default: 1

	DiskGravity (external)

	This flag (1 - on, 0 - off) indicates if there is to be a
disk-like gravity field (Berkert 1995; Mori & Burkert 2000).  Default: 0

	DiskGravityPosition (external)

	This indicates the position of the center of the disk gravity.
Default: 0 0 0

	DiskGravityAngularMomentum (external)

	Specifies the unit vector of the disk angular momentum.
Default: 0 0 1

	DiskGravityStellarDiskMass (external)

	Total mass of stellar disk (in solar masses)
Default: 1e11

	DiskGravityDiskScaleHeightR (external)

	Disk scale length in radius (in Mpc)
Default: 4.0e-3

	DiskGravityDiskScaleHeightz (external)

	Disk scale height in z (in Mpc)
Default: 2.5e-4

	DiskGravityStellarBulgeMass (external)

	Disk stellar bulge mass (in solar masses)
Default: 1.0e10

	DiskGravityStellarBulgeR (external)

	Disk stellar bulge scalue radius (in Mpc)
Default: 1.0e-4

	DiskGravityDarkMatterR (external)

	Dark matter halo scale radius (in Mpc)
Default: 2.3e-2

	DiskGravityDarkMatterDensity (external)

	Dark matter effective density (in cgs)
Default: 3.81323e-25
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Hydrodynamics Parameters


General


	UseHydro (external)

	This flag (1 - on, 0 - off) controls whether a hydro solver is used.
Default: 1

	HydroMethod (external)

	This integer specifies the hydrodynamics method that will be used.
Currently implemented are







	Hydro method
	Description




	0
	PPM DE (a direct-Eulerian version of PPM)


	1
	[reserved]


	2
	ZEUS (a Cartesian, 3D version of Stone & Norman). Note that if ZEUS is selected, it automatically turns off ConservativeInterpolation and the DualEnergyFormalism flags.


	3
	Runge Kutta second-order based MUSCL solvers.


	4
	Same as 3 but including Dedner MHD (Wang & Abel 2008). For 3 and 4 there are the additional parameters RiemannSolver and ReconstructionMethod you want to set.


	5
	No Hydro (Testing only)


	6
	MHD with Constrained Transport.





Default: 0

More details on each of the above methods can be found at Hydro and MHD Methods.



	FluxCorrection (external)

	This flag indicates if the flux fix-up step should be carried out
around the boundaries of the sub-grid to preserve conservation (1 -
on, 0 - off). Strictly speaking this should always be used, but we
have found it to lead to a less accurate solution for cosmological
simulations because of the relatively sharp density gradients
involved. However, it does appear to be important when radiative
cooling is turned on and very dense structures are created.
It does work with the ZEUS
hydro method, but since velocity is face-centered, momentum flux is
not corrected. Species quantities are not flux corrected directly
but are modified to keep the fraction constant based on the density
change. Default: 1

	InterpolationMethod (external)

	There should be a whole section devoted to the interpolation
method, which is used to generate new sub-grids and to fill in the
boundary zones of old sub-grids, but a brief summary must suffice.
The possible values of this integer flag are shown in the table
below. The names specify (in at least a rough sense) the order of
the leading error term for a spatial Taylor expansion, as well as a
letter for possible variants within that order. The basic problem
is that you would like your interpolation method to be:
multi-dimensional, accurate, monotonic and conservative. There
doesn’t appear to be much literature on this, so I’ve had to
experiment. The first one (ThirdOrderA) is time-consuming and
probably not all that accurate. The second one (SecondOrderA) is
the workhorse: it’s only problem is that it is not always
symmetric. The next one (SecondOrderB) is a failed experiment, and
SecondOrderC is not conservative. FirstOrderA is everything except
for accurate. If HydroMethod = 2 (ZEUS), this flag is ignored, and
the code automatically uses SecondOrderC for velocities and
FirstOrderA for cell-centered quantities. Default: 1

0 - ThirdOrderA     3 - SecondOrderC
1 - SecondOrderA    4 - FirstOrderA
2 - SecondOrderB







	ConservativeInterpolation (external)

	This flag (1 - on, 0 - off) indicates if the interpolation should
be done in the conserved quantities (e.g. momentum rather than
velocity). Ideally, this should be done, but it can cause problems
when strong density gradients occur. This must(!) be set off for
ZEUS hydro (the code does it automatically). Default: 1

	RiemannSolver (external)

	This integer specifies the Riemann solver. Solver options, and the relevant
hydro method, are summarized as follows:








	Riemann solver
	HydroMethod
	Description




	0
	–
	[reserved]


	1
	0,3,4
	HLL (Harten-Lax-van Leer) a two-wave, three-state solver with no resolution of contact waves


	2
	
	[reserved]


	3
	3,4
	LLF (Local Lax-Friedrichs)


	4
	0,3
	HLLC (Harten-Lax-van Leer with Contact) a three-wave, four-state solver with better resolution of contacts


	5
	0
	TwoShock


	6
	4,6
	HLLD





Default: 1 (HLL) for HydroMethod = 3; 5 (TwoShock) for
HydroMethod = 0; 6 (HLLD) for HydroMethod = 6



	RiemannSolverFallback (external; only if HydroMethod is 0, 3 or 4)

	If the euler update results in a negative density or energy, the
solver will fallback to the HLL Riemann solver that is more
diffusive only for the failing cell.  Only active when using the
HLLC or TwoShock Riemann solver.  Default: OFF.

	ReconstructionMethod (external; only if HydroMethod is 3 or 4)

	This integer specifies the reconstruction method for the MUSCL solver. Choice of








	Reconstruction Method
	HydroMethod
	Description




	0
	0,3,4,6
	PLM (piecewise linear)


	1
	0
	PPM (piecwise parabolic)


	2
	
	[reserved]


	3
	
	[reserved]


	4
	
	[reserved]


	6
	6
	MUSCL-Hancock (Non Runge-Kutta)





Default: 0 (PLM) for HydroMethod = 3; 1 (PPM) for HydroMethod = 0



	ConservativeReconstruction (external; only if HydroMethod is 3 or 4)

	Experimental.  This option turns on the reconstruction of the
left/right interfaces in the Riemann problem in the conserved
variables (density, momentum, and energy) instead of the primitive
variables (density, velocity, and pressure).  This generally gives
better results in constant-mesh problems has been problematic in
AMR simulations.  Default: OFF

	PositiveReconstruction (external; only if HydroMethod is 3 or 4)

	Experimental and not working.  This forces the Riemann solver to
restrict the fluxes to always give positive pressure.  Attempts to
use the Waagan (2009), JCP, 228, 8609 method.  Default: OFF

	Gamma (external)

	The ratio of specific heats for an ideal gas (used by all hydro
methods). If using multiple species (i.e. MultiSpecies > 0), then
this value is ignored in favor of a direct calculation (except for
PPM LR) Default: 5/3.

	Mu (external)

	The molecular weight. Default: 0.6.

	CourantSafetyNumber (external)

	This is the maximum fraction of the CFL-implied timestep that will
be used to advance any grid. A value greater than 1 is unstable
(for all explicit methods). The recommended value is 0.4. Default:
0.6.

	RootGridCourantSafetyNumber (external)

	This is the maximum fraction of the CFL-implied timestep that will
be used to advance ONLY the root grid. When using simulations with
star particle creation turned on, this should be set to a value of
approximately 0.01-0.02 to keep star particles from flying all over
the place. Otherwise, this does not need to be set, and in any case
should never be set to a value greater than 1.0. Default: 1.0.

	UseCoolingTimestep (external)

	This parameter will limit the timestep on each level by some fraction
of the minimum cooling time on the level, where this fraction is
set by CoolingTimestepSafetyFactor.  In most cases, this will
substantially decrease the timesteps, depending on the local
cooling time, and thus increase the run time of any
simulation. Default: OFF

	CoolingTimestepSafetyFactor (external)

	Described in UseCoolingTime.  Default: 0.1

	DualEnergyFormalism (external)

	The dual energy formalism is needed to make total energy schemes
such as PPM DE and PPM LR stable and accurate in the
“hyper-Machian” regime (i.e. where the ratio of thermal energy to
total energy < ~0.001). Turn on for cosmology runs with PPM DE and
PPM LR. Automatically turned off when used with the hydro method
ZEUS. Integer flag (0 - off, 1 - on). When turned on, there are two
energy fields: total energy and thermal energy. Default: 0

	DualEnergyFormalismEta1, DualEnergyFormalismEta2 (external)

	These two parameters are part of the dual energy formalism and
should probably not be changed. Defaults: 0.001 and 0.1
respectively.

	PressureFree (external)

	A flag that is interpreted by the PPM DE hydro method as an
indicator that it should try and mimic a pressure-free fluid. A
flag: 1 is on, 0 is off. Default: 0

	PPMFlatteningParameter (external)

	This is a PPM parameter to control noise for slowly-moving shocks.
It is either on (1) or off (0). Default: 0

	PPMDiffusionParameter (external)

	This is the PPM diffusion parameter (see the Colella and Woodward
method paper for more details). It is either on (1) or off (0).
Default: 1 [Currently disabled (set to 0)]

	PPMSteepeningParameter (external)

	A PPM modification designed to sharpen contact discontinuities. It
is either on (1) or off (0). Default: 0

	ZEUSQuadraticArtificialViscosity (external)

	This is the quadratic artificial viscosity parameter C2 of Stone &
Norman, and corresponds (roughly) to the number of zones over which
a shock is spread. Default: 2.0

	ZEUSLinearArtificialViscosity (external)

	This is the linear artificial viscosity parameter C1 of Stone &
Norman. Default: 0.0






Minimum Pressure Support Parameters


	UseMinimumPressureSupport (external)

	When radiative cooling is turned on, and objects are allowed to
collapse to very small sizes so that their Jeans length is no
longer resolved, then they may undergo artificial fragmentation
and angular momentum non-conservation.  To alleviate this problem,
as discussed in more detail in Machacek, Bryan & Abel (2001), a
very simple fudge was introduced: if this flag is turned on, then
a minimum temperature is applied to grids with level ==
MaximumRefinementLevel. This minimum temperature is that
required to make each cell Jeans stable multiplied by the
parameter below.  More precisely, the temperature of a cell is set
such that the resulting Jeans length is the square-root of the
parameter MinimumPressureSupportParameter.  So, for the
default value of 100 (see below), this insures that the ratio of
the Jeans length/cell size is at least 10.  Default: 0

	MinimumPressureSupportParameter (external)

	This is the numerical parameter discussed above. Default: 100






Magnetohydrodynamics (CT) Parameters


	MHD_CT_Method (external)

	Method for computing the electric field from the Riemann fluxes







	CT Method
	Description




	0
	None (only for debugging)


	1
	Balsara and Spicer 1999. First order average.


	2
	Gardiner and Stone 2005. Second order Lax-Friedrichs type reconstruction.
Uses CT_AthenaDissipation flag.


	3
	Gardiner and Stone 2005.  Second order reconstruction using
upwind switches





Default: 3



	CT_AthenaDissipation  (external)

	For the Lax-Friedrichs CT method, this is the maximum wave speed.  ([image: \alpha] in Gardiner & Stone 2005 eqn. 46). Default: 0.1

	EquationOfState (external, ct only)

	0: standard adiabatic 1: Exactly isothermal
equation of state.  This flag removes the total energy term completely, instead
computing pressure as [image: p = c^2 \rho]. This option only works with
HydroMethod = 6 and RiemannSolver = 6 (HLLD) as this is the only purely
isothermal Riemann solver in Enzo.  Default: 0

	IsothermalSoundSpeed (external, ct only)

	When EquationOfState = 1, this is the
sound speed used for computation of pressure.  Default: 1

	MHDCTSlopeLimiter (external, ct only)

	For computing derivatives for the reconstruction,
this switches between zero slope (0), minmod (1), VanLeer (2), and
characteristic  (3) characteristic with primitive limiting (4).  Default: 1

	ReconstructionMethod (external)

	There are two reconstruction methods
that work with MHDCT: Piecewise Linear Method (PLM) (0) and MUSCL-Hancock (6).  This
formuation of MUSCL-Hancock is different from the 2nd order Runga Kutta used for
HydroMethod = 3,4.

	RiemannSolver (external)

	As with HydroMethod=4, the prefered solver is
HLLD (RiemannSolver=6).  Other solvers may be released if the DOE approves
them.

	MHDCTUseSpecificEnergy (external)

	Either specific energy is used internally
(1) or conserved energy is used internally (0).  Minor difference in boundary
condition update, included for comparison to old solutions.  Default: 1

	MHDCTDualEnergyMethod (external)

	When DualEnergyFormalism = 1, this switches
between a method that solves an additional equation for the internal energy, as
in the rest of Enzo, and method that updates the entropy.

	MHD_WriteElectric (external)

	Include the electric field in the output.
Default: 0

	MHD_ProjectB (internal)

	Project magnetic fields from fine to coarse.
Should not be done in general, only used for initialization.

	MHD_ProjectE (internal)

	Project Electric fields from fine to coarse.
Used for the time evolution of the fields.






Magnetohydrodynamics (Dedner) Parameters

The following parameters are considered only when HydroMethod is 3 or 4 (and occasionally only in some test problems).
Because many of the following parameters are not actively being tested and maintained, users are encouraged to carefully examine the code before using it.


	UseDivergenceCleaning (external)

	Method 1 and 2 are a failed experiment to do divergence cleaning
using successive over relaxation. Method 3 uses conjugate gradient
with a 2 cell stencil and Method 4 uses a 4 cell stencil. 4 is more
accurate but can lead to aliasing effects. Default: 0

	DivergenceCleaningBoundaryBuffer (external)

	Choose to not correct in the active zone of a grid by a
boundary of cells this thick. Default: 0

	DivergenceCleaningThreshold (external)

	Calls divergence cleaning on a grid when magnetic field divergence
is above this threshold. Default: 0.001

	PoissonApproximateThreshold (external)

	Controls the accuracy of the resulting solution for divergence
cleaning Poisson solver. Default: 0.001

	UseDrivingField (external)

	This parameter is used to add external driving force as a source term in some test problems; see hydro_rk/Grid_(MHD)SourceTerms.C. Default: 0

	DrivingEfficiency (external)

	This parameter is used to define the efficiency of such driving force; see hydro_rk/Grid_(MHD)SourceTerms.C. Default: 1.0

	UseConstantAcceleration (external)

	This parameter is used to add constant acceleration as a source term in some set-ups; see hydro_rk/Grid_(MHD)SourceTerms.C. Default: 0

	ConstantAcceleration[] (external)

	This parameter is used to define the value of such acceleration; see hydro_rk/Grid_(MHD)SourceTerms.C.

	UseViscosity (external)

	This parameter is used to add viscosity and thereby update velocity in some set-ups (1 - constant viscosity, 2 - alpha viscosity); see ComputeViscosity in hydro_rk/Grid_AddViscosity.C.  Default: 0

	ViscosityCoefficient (external)

	This parameter is used to define the value of such viscosity for UseViscosity = 1; see ComputeViscosity in hydro_rk/Grid_AddViscosity.C. Default: 0.0

	UseGasDrag (external)

	This parameter is used to calculate velocity decrease caused by gas drag as a source term in some set-ups; see hydro_rk/Grid_(MHD)SourceTerms.C. Default: 0

	GasDragCoefficient (external)

	This parameter is used to define the value of such gas drag; see hydro_rk/Grid_(MHD)SourceTerms.C. Default: 0.0

	UseFloor (external)

	This parameter is used to impose the minimum energy based on MaximumAlvenSpeed in some set-ups; see hydro_rk/Grid_SetFloor.C. Default: 0

	MaximumAlvenSpeed (external)

	This parameter is used to define the value of such minimum; see hydro_rk/Grid_SetFloor.C. Default: 1e30

	UseAmbipolarDiffusion (external)

	This parameter is used to update magnetic fields by ambipolar diffusion in some set-ups; see hydro_rk/Grid_AddAmbipolarDiffusion.C. Default: 0

	UseResistivity (external)

	This parameter is used to add resistivity and thereby update magnetic fields in some set-ups; see ComputeResistivity in hydro_rk/Grid_AddResistivity.C.  Default: 0

	UsePhysicalUnit (external)

	For some test problems (mostly in hydro_rk), the relevant parameters could be defined in physical CGS units.  Default: 0

	SmallRho (external)

	Minimum value for density in hydro_rk/EvolveLevel_RK.C.  Default: 1e-30 (note that the default value assumes UsePhysicalUnit = 1)

	SmallT (external)

	Minimum value for temperature in hydro_rk/EvolveLevel_RK.C.  Default: 1e-10 (note that the default value assumes UsePhysicalUnit = 1)

	SmallP

	[not used]

	RKOrder

	[not used]

	Theta_Limiter (external)

	Flux limiter in the minmod Van Leer formulation.  Must be between 1 (most dissipative) and 2 (least dissipative). Default: 1.5

	Coordinate (external)

	Coordinate systems to be used in hydro_rk/EvolveLevel_RK.C.  Currently implemented are Cartesian and Spherical for HD_RK, and Cartesian and Cylindrical for MHD_RK.  See Grid_(MHD)SourceTerms.C.  Default: Cartesian

	EOSType (external)

	Types of Equation of State used in hydro_rk/EvolveLevel_RK.C (0 - ideal gas, 1 - polytropic EOS, 2 - another polytropic EOS, 3 - isothermal, 4 - pseudo cooling, 5 - another pseudo cooling, 6 - minimum pressure); see hydro_rk/EOS.h. Default: 0

	EOSSoundSpeed (external)

	Sound speed to be used in EOS.h for EOSType = 1, 2, 3, 4, 5.  Default: 2.65e4

	EOSCriticalDensity (external)

	Critical density to be used in EOS.h for EOSType = 1, 2, 4, 6. Default: 1e-13

	EOSGamma (external)

	Polytropic gamma to be used in EOS.h for EOSType = 1. Default: 1.667

	DivBDampingLength (external)

	From C_h (the Dedner wave speeds at which the div*B error is isotropically transferred; as defined in e.g. Matsumoto, PASJ, 2007, 59, 905) and this parameter, C_p (the decay rate of the wave) is calculated; see ComputeDednerWaveSpeeds.C  Default: 1.0

	UseCUDA (external)

	Set to 1 to use the CUDA-accelerated (M)HD solver.  Only works if compiled with cuda-yes. Default: 0

	ResetMagneticField (external)

	Set to 1 to reset the magnetic field in the regions that are denser
than the critical matter density. Very handy when you want to
re-simulate or restart the dumps with MHD. Default: 0

	ResetMagneticFieldAmplitude (external)

	The magnetic field values (in Gauss) that will be used for the
above parameter. Default: 0.0 0.0 0.0

	CoolingCutOffDensity1

	Reserved for future use

	CoolingCutOffDensity2

	Reserved for future use

	CoolingCutOffTemperature

	Reserved for future use

	CoolingPowerCutOffDensity1

	Reserved for future use

	CoolingPowerCutOffDensity2

	Reserved for future use
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Cooling Parameters


Simple Cooling Options


	RadiativeCooling (external)

	This flag (1 - on, 0 - off) controls whether or not a radiative
cooling module is called for each grid. There are currently several
possibilities, controlled by the value of another flag. See Radiative Cooling and UV Physics Parameters
for more information on the various cooling methods.  Default: 0


	If the MultiSpecies flag is off, then equilibrium cooling is
assumed and one of the following two will happen. If the parameter
GadgetCooling is set to 1, the primordial equilibrium code is
called (see below). If GadgetCooling is set to 0, a file called
cool_rates.in is read to set a cooling curve. This file consists
of a set of temperature and the associated cgs cooling rate; a
sample compute with a metallicity Z=0.3 Raymond-Smith code is
provided in input/cool_rates.in. This has a cutoff at 10000 K
(Sarazin & White 1987). Another choice will be
input/cool_rates.in_300K which goes further down to 300 K (Rosen
& Bregman 1995).

	If the MultiSpecies flag is on, then the cooling rate is
computed directly by the species abundances. This routine (which
uses a backward differenced multi-step algorithm) is borrowed
from the Hercules code written by Peter Anninos and Yu Zhang,
featuring rates from Tom Abel. Other varieties of cooling are
controlled by the MetalCooling parameter, as discused below.





	RadiativeCoolingModel (external)

	This switches between the tabular look up cooling that is standard (RadiativeCoolingModel=1) and an analytic fit to the Wolfire et al 2003, ApJ, 587, 278 made by Koyama and Inutsuka 2006 (RadiativeCoolingModel = 3, arXiv:astro-ph/0605528).  Default: 1

	GadgetCooling (external)

	This flag (1 - on, 0 - off) turns on (when set to 1) a set of
routines that calculate cooling rates based on the assumption of a
six-species primordial gas (H, He, no H2 or D) in equilibrium, and
is valid for temperatures greater than 10,000 K. This requires the
file TREECOOL to execute. Default: 0

	GadgetEquilibriumCooling (external)

	An implementation of the ionization equilibrium cooling code used
in the GADGET code which includes both radiative cooling and a
uniform metagalactic UV background specified by the TREECOOL file
(in the amr_mpi/exe directory). When this parameter is turned on,
MultiSpecies and RadiationFieldType are forced to 0 and
RadiativeCooling is forced to 1.
[Not in public release version]

	MetalCooling (external)

	This flag (0 - off, 1 - metal cooling from Glover & Jappsen 2007,
2 - Cen et al (1995), 3 - Cloudy cooling from Smith, Sigurdsson, &
Abel 2008) turns on metal cooling for runs that track
metallicity. Option 1 is valid for temperatures between 100 K and
108K because it considers fine-structure line emission
from carbon, oxygen, and silicon and includes the additional metal
cooling rates from Sutherland & Dopita (1993). Option 2 is only
valid for temperatures above 104K. Option 3 uses
multi-dimensional tables of heating/cooling values created with
Cloudy and optionally coupled to the MultiSpecies
chemistry/cooling solver. This method is valid from 10 K to 108K. See the Cloudy Cooling parameters below.  Default: 0.

	MetalCoolingTable (internal)

	This field contains the metal cooling table required for
MetalCooling option 1. In the top level directory input/, there are
two files metal_cool.dat and metal_cool_pop3.dat that consider
metal cooling for solar abundance and abundances from
pair-instability supernovae, respectively. In the same directory,
one can find an IDL routine (make_Zcool_table.pro) that generates
these tables. Default: metal_cool.dat

	MultiSpecies (external)

	If this flag (1, 2, 3- on, 0 - off) is on, then the code follows
not just the total density, but also the ionization states of
Hydrogen and Helium. If set to 2, then a nine-species model
(including H2, H2+ and H-) will be computed, otherwise only six
species are followed (H, H+, He, He+, He++, e-). If set to 3, then
a 12 species model is followed, including D, D+ and HD. This
routine, like the last one, is based on work done by Abel, Zhang
and Anninos. Default: 0

	MultiMetals (external)

	This was added so that the user could turn on or off additional
metal fields - currently there is the standard metallicity field
(Metal_Density) and two additional metal fields (Z_Field1 and
Z_Field2). Acceptable values are 1 or 0, Default: 0 (off).

	ThreeBodyRate (external)

	Which Three Body rate should be used for H2 formation?: 0 = Abel, Bryan, Norman 2002, 1 = PSS83, 2= CW83, 3 = FH07, 4= G08.  (Turk et al 2011 covers these)

	CIECooling (external)

	Should CIE (Ripamonti & Abel 2004) cooling be included at high densities?

	H2OpticalDepthApproximation (external)

	Should the H2 cooling be attenuated (RA04)?

	H2FormationOnDust (external)

	Turns on H2 formation on dust grains and gas-grain heat transfer following Omukai (2000). Default: 0 (OFF)

	NumberOfDustTemperatureBins (external)

	Number of dust temperature bins for the dust cooling and H2 formation rates.  Default: 250

	DustTemperatureStart (external)

	Minimum dust temperature for dust rates.  Default: 1.0

	DustTemperatureEnd (external)

	Maximum dust temperature for dust rates.  Default: 1500

	OutputDustTemperature (external)

	Flag to write out the dust temperature field.  Default: 0

	PhotoelectricHeating (external)

	If set to be 1, the following parameter will be added uniformly
to the gas without any shielding (Tasker & Bryan 2008). Default: 0

	PhotoelectricHeatingRate (external)

	This is the parameter used as Gamma_pe for uniform photoelectric heating.
Default: 8.5e-26 erg s^-1 cm^-3






Cloudy Cooling

Cloudy cooling from Smith, Sigurdsson, & Abel (2008) interpolates
over tables of precomputed cooling data. Cloudy cooling is turned
on by setting MetalCooling to 3. RadiativeCooling must also be set
to 1. Depending on the cooling data used, it can be coupled with
MultiSpecies = 1, 2, or 3 so that the metal-free cooling comes from
the MultiSpecies machinery and the Cloudy tables provide only the
metal cooling. Datasets range in dimension from 1 to 5. Dim 1:
interpolate over temperature. Dim 2: density and temperature. Dim
3: density, metallicity, and temperature. Dim 4: density,
metallicity, electron fraction, and temperature. Dim 5: density,
metallicity, electron fraction, spectral strength, and temperature.
See Smith, Sigurdsson, & Abel (2008) for more information on
creating Cloudy datasets.


	CloudyCoolingGridFile (external)

	A string specifying the path to the Cloudy cooling dataset.

	IncludeCloudyHeating (external)

	An integer (0 or 1) specifying whether the heating rates are to be
included in the calculation of the cooling. Some Cloudy datasets
are made with the intention that only the cooling rates are to be
used. Default: 0 (off).

	CMBTemperatureFloor (external)

	An integer (0 or 1) specifying whether a temperature floor is
created at the temperature of the cosmic microwave background
(TCMB = 2.72 (1 + z) K). This is accomplished in the
code by subtracting the cooling rate at TCMB such that
Cooling = Cooling(T) - Cooling(TCMB). Default: 1 (on).

	CloudyElectronFractionFactor (external)

	A float value to account for additional electrons contributed by
metals. This is only used with Cloudy datasets with dimension
greater than or equal to 4. The value of this factor is calculated
as the sum of (Ai * i) over all elements i heavier than
He, where Ai is the solar number abundance relative to
H. For the solar abundance pattern from the latest version of
Cloudy, using all metals through Zn, this value is 9.153959e-3.
Default: 9.153959e-3.






The Grackle

The Grackle is an external chemistry and cooling library originally derived from
Enzo’s MultiSpecies chemistry and Cloudy cooling modules.  See here
for a full description, including why you might use this over Enzo’s internal
chemistry and cooling.  For more information on Grackle parameter, see also the
Grackle documentation [https://grackle.readthedocs.org/].  Note, some Grackle
parameters have been mapped to Enzo parameters for simplicity.


	use_grackle (int)

	Flag to use the Grackle machinery (1 - on, 0 - off). Default: 0.

	with_radiative_cooling (int)

	Flag to include radiative cooling and actually update the thermal energy during the chemistry solver.  If off, the chemistry species will still be updated.  The most common reason to set this to off is to iterate the chemistry network to an equilibrium state (1 - on, 0 - off).  Default: 1.

	MultiSpecies (int) [mapped to Grackle parameter primordial_chemistry]

	Flag to control which primordial chemistry network is used.  Default: 0.


	0: no chemistry network.  Radiative cooling for primordial species is solved by interpolating from lookup tables calculated with Cloudy.

	1: 6-species atomic H and He.  Active species: H, H+, He, He+, ++, e-.

	2: 9-species network including atomic species above and species for molecular hydrogen formation.  This network includes formation from the H- and H2+ channels, three-body formation (H+H+H and H+H+H2), H2 rotational transitions, chemical heating, and collision-induced emission (optional).  Active species: above + H-, H2, H2+.

	3: 12-species network include all above plus HD rotation cooling.  Active species: above plus D, D+, HD.





	H2FormationOnDust (int) [mapped to Grackle parameter h2_on_dust]

	See Enzo equivalent above.  Default: 0.

	MetalCooling (int) [mapped to Grackle parameter metal_cooling]

	Flag to enable metal cooling using the Cloudy tables.  If enabled, the cooling table to be used must be specified with the grackle_data_file parameter (1 - on, 0 - off).  Default: 0.

	CMBTemperatureFloor (int) [mapped to Grackle parameter cmb_temperature_floor]

	See Enzo equivalent above.  Default: 1.

	UVbackground (int)

	Flag to enable a UV background.  If enabled, the cooling table to be used must be specified with the grackle_data_file parameter (1 - on, 0 - off).  Default: 0.

	grackle_data_file (string)

	Path to the data file containing the metal cooling and UV background tables.  Default: “”.

	Gamma (float)

	See Enzo equivalent above.  Default:  5/3.

	ThreeBodyRate (int) [mapped to Grackle parameter three_body_rate]

	See Enzo equivalent above.  Default: 0.

	CIECooling (int) [mapped to Grackle parameter cie_cooling]

	See Enzo equivalent above.  Default: 0.

	H2OpticalDepthApproximation (int) [mapped to Grackle parameter h2_optical_depth_approximation]

	See Enzo equivalent above.  Default: 0.

	PhotoelectricHeating (int) [mapped to Grackle parameter photoelectric_heating]

	See Enzo equivalent above.  Default: 0.

	PhotoelectricHeatingRate (float) [mapped to Grackle parameter photoelectric_heating_rate]

	See Enzo equivalent above.  Default: 8.5e-26.

	Compton_xray_heating (int)

	Flag to enable Compton heating from an X-ray background following Madau & Efstathiou (1999) [http://adsabs.harvard.edu/abs/1999ApJ...517L...9M].  Default: 0.

	LWbackground_intensity (float)

	Intensity of a constant Lyman-Werner H2 photo-dissociating radiation field in units of 10-21 erg s-1 cm-2 Hz-1 sr-1.  Default: 0.

	LWbackground_sawtooth_suppression (int)

	Flag to enable suppression of Lyman-Werner flux due to Lyman-series absorption (giving a sawtooth pattern), taken from Haiman & Abel, & Rees (2000) [http://adsabs.harvard.edu/abs/2000ApJ...534...11H].  Default: 0.
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Particle Parameters


	ParticleBoundaryType (external)

	The boundary condition imposed on particles. At the moment, this
parameter is largely ceremonial as there is only one type
implemented: periodic, indicated by a 0 value. Default: 0

	ParticleCourantSafetyNumber (external)

	This somewhat strangely named parameter is the maximum fraction of
a cell width that a particle is allowed to travel per timestep
(i.e. it is a constant on the timestep somewhat along the lines of
it’s hydrodynamic brother). Default: 0.5

	NumberOfParticles (obsolete)

	Currently ignored by all initializers, except for TestGravity and
TestGravitySphere where it is the number of test points. Default: 0

	NumberOfParticleAttributes (internal)

	It is set to 3 if either StarParticleCreation or
StarParticleFeedback is set to 1 (TRUE). Default: 0

	ParallelParticleIO (external)

	Normally, for the mpi version, the particle data are read into the
root processor and then distributed to separate processors.
However, for very large number of particles, the root processor may
not have enough memory. If this toggle switch is set on (i.e. to
the value 1), then Ring i/o is turned on and each processor reads
its own part of the particle data. More I/O is required, but it is
more balanced in terms of memory. ParallelRootGridIO and
ParallelParticleIO MUST be set for runs involving > 64 cpus!
See also ParallelRootGridIO in I/O Parameters.
Default: 0 (FALSE).

	ParticleSplitterIterations (external)

	Set to 1 to split particles into 13 particles (= 12 children+1
parent, Kitsionas & Whitworth (2002)). This should be ideal for
setting up an low-resolution initial condition for a relatively low
computational cost, running it for a while, and then restarting it
for an extremely high-resolution simulation in a focused region.
Currently it implicitly assumes that only DM (type=1) and
conventional star particles (type=2) inside the RefineRegion get
split. Other particles, which usually become Star class objects,
seem to have no reason to be split. Default: 0

	ParticleSplitterChildrenParticleSeparation (external)

	This is the spacing between the child particles placed on a
hexagonal close-packed (HCP) array. In the unit of a cell size
which the parent particle resides in. Default: 1.0
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Star Formation and Feedback Parameters

For details on each of the different star formation methods available in Enzo see Active Particles: Stars, BH, and Sinks.


General


	StarParticleCreation (external)

	This parameter is bitwise so that multiple types of star formation
routines can be used in a single simulation. For example if methods
1 and 3 are desired, the user would specify 10 (21 +
23), or if methods 1, 4 and 7 are wanted, this would be
146 (21 + 24 + 27). Default: 0

0  - Cen & Ostriker (1992)
1  - Cen & Ostriker (1992) with stocastic star formation
2  - Global Schmidt Law / Kravstov et al. (2003)
3  - Population III stars / Abel, Wise & Bryan (2007)
4  - Sink particles: Pure sink particle or star particle with wind feedback depending on
     choice for HydroMethod / Wang et al. (2009)
5  - Radiative star clusters  / Wise & Cen (2009)
6  - [reserved for future use]
7  - Cen & Ostriker (1992) with no delay in formation
8  - Springel & Hernquist (2003)
9  - Massive Black Hole (MBH) particles insertion by hand / Kim et al. (2010)
10 - Population III stellar tracers
11 - Molecular hydrogen regulated star formation
13 - Distributed stellar feedback model (So et al. 2014)
14 - Cen & Ostriker (1992) stochastic star formation with kinetic feedback
     / Simpson et al. (2015)







	StarParticleFeedback (external)

	This parameter works the same way as StarParticleCreation but only
is valid for StarParticleCreation method = 0, 1, 2, 7, 8 and 14 because methods 3, 5 and 9
use the radiation transport module and Star_*.C routines to
calculate the feedback, 4 has explicit feedback and 10 does not use feedback. Default: 0.

	StarFeedbackDistRadius (external)

	If this parameter is greater than zero, stellar feedback will be
deposited into the host cell and neighboring cells within this
radius.  This results in feedback being distributed to a cube with
a side of StarFeedbackDistRadius+1. It is in units of cell
widths of the finest grid which hosts the star particle.  Only
implemented for StarParticleCreation method = 0 or 1 with StarParticleFeedback method =  1. (If StarParticleFeedback = 0, stellar feedback is only deposited into the cell in which the star particle lives).  Default: 0.

	StarFeedbackDistCellStep (external)

	In essence, this parameter controls the shape of the volume where
the feedback is applied, cropping the original cube.  This volume
that are within StarFeedbackDistCellSteps cells from the host
cell, counted in steps in Cartesian directions, are injected with
stellar feedback.  Its maximum value is StarFeedbackDistRadius
* TopGridRank.  Only implemented for StarParticleCreation method = 0
or 1  with StarParticleFeedback method =  1.  See Distributed Stellar Feedback for an illustration.
Default: 0.

	StarMakerTypeIaSNe (external)

	This parameter turns on thermal and chemical feedback from Type Ia
supernovae.  The mass loss and luminosity of the supernovae are
determined from fits of K. Nagamine [http://www.physics.unlv.edu/~kn/SNIa_2/].  The ejecta are
traced in a separate species field, MetalSNIa_Density.  The
metallicity of star particles that comes from this ejecta is
stored in the particle attribute typeia_fraction.  Can be used
with StarParticleCreation method = 0, 1, 2, 5, 7, 8, and 13.  Default:
0.

	StarMakerPlanetaryNebulae (external)

	This parameter turns on thermal and chemical feedback from
planetary nebulae.  The mass loss and luminosity are taken from
the same fits from K. Nagamine [http://www.physics.unlv.edu/~kn/SNIa_2/].  The chemical
feedback injects gas with the same metallicity as the star
particle, and the thermal feedback equates to a 10 km/s wind.  The
ejecta are not stored in its own species field.  Can be used
with StarParticleCreation method = 0, 1, 2, 5, 7, 8, and 13.  Default: 0.

	StarParticleRadiativeFeedback (external)

	By setting this parameter to 1, star particles created with
methods (0, 1, 2, 5, 7, 8, 13) will become radiation sources with
the UV luminosity being determined with the parameter
StarEnergyToStellarUV.  Default: OFF






Normal Star Formation

The parameters below are considered in StarParticleCreation method
0, 1, 2, 7, 8, 13 and 14.


	StarMakerOverDensityThreshold (external)

	The overdensity threshold in code units (for cosmological simulations, note that code units are relative to the total mean density, not
just the dark matter mean density) before star formation will be
considered. For StarParticleCreation method = 7 in cosmological
simulations, however, StarMakerOverDensityThreshold should be in
particles/cc, so it is not the ratio with respect to the
DensityUnits (unlike most other
star_makers). This way one correctly represents the Jeans
collapse and molecular cloud scale physics even in cosmological
simulations. Default: 100

	StarMakerSHDensityThreshold (external)

	The critical density of gas used in Springel & Hernquist star
formation ( \rho_{th} in the paper) used to determine the star
formation timescale in units of g cm-3. Only valid for StarParticleCreation method = 8. Default: 7e-26.

	StarMakerMassEfficiency (external)

	The fraction of identified baryonic mass in a cell
(Mass*dt/t_dyn) that is converted into a star particle. Default:
1

	StarMakerMinimumMass (external)

	The minimum mass of star particle, in solar masses. Note however,
the star maker algorithm 2 has a (default off) “stochastic” star formation
algorithm that will, in a pseudo-random fashion, allow star
formation even for very low star formation rates. It attempts to do
so (relatively successfully according to tests) in a fashion that
conserves the global average star formation rate. Default: 1e9

	StarMakerMinimumDynamicalTime (external)

	When the star formation rate is computed, the rate is proportional
to M_baryon * dt/max(t_dyn, t_max) where t_max is this
parameter. This effectively sets a limit on the rate of star
formation based on the idea that stars have a non-negligible
formation and life-time. The unit is years. Default: 1e6

	StarMakerTimeIndependentFormation (external)

	When used, the factor of dt / t_dyn is removed from the calculation of
the star particle mass above.  Instead of the local dynamical time, the
timescale over which feedback occurs is a constant set by the parameter
StarMakerMinimumDynamicalTime.  This is necessary when running with
conduction as the timesteps can be very short, which causes the calculated
star particle mass to never exceed reasonable values for
StarMakerMinimumMass.  This prevents cold, star-forming gas from
actually forming stars, and when combined with conduction, results in too
much heat being transferred out of hot gas.  When running a cosmological
simulation with conduction and star formation, one must use this otherwise
bad things will happen.  (1 - ON; 0 - OFF)  Default: 0.

	StarMassEjectionFraction (external)

	The mass fraction of created stars which is returned to the gas
phase. Default: 0.25

	StarMetalYield (external)

	The mass fraction of metals produced by each unit mass of stars
created (i.e. it is multiplied by mstar, not ejected). Default:
0.02

	StarEnergyToThermalFeedback (external)

	The fraction of the rest-mass energy of the stars created which is
returned to the gas phase as thermal energy. Default: 1e-5

	StarEnergyToStellarUV (external)

	The fraction of the rest-mass energy of the stars created which is
returned as UV radiation with a young star spectrum. This is used
when calculating the radiation background. Default: 3e-6

	StarEnergyToQuasarUV (external)

	The fraction of the rest-mass energy of the stars created which is
returned as UV radiation with a quasar spectrum. This is used when
calculating the radiation background. Default: 5e-6

	StarFeedbackKineticFraction (external)

	Only valid for StarParticleFeedback method = 14.  If set to a zero or positive
value between 0.0 and 1.0, this is the constant fraction of energy injected in kinetic
form.  If set to -1, then a variable kinetic fraction is used that depends on local
gas density, metallicity and resolution.  See Simpson et al. 2015
for details. Note, some failures may occur in -1 mode.  Default 0.0

	StarMakerExplosionDelayTime (external)

	Only valid for StarParticleFeedback method = 14.  If set to a positive value, energy,
metals and mass from the particle are injected in a single timestep that is delayed from
the particle creation time by this amount.  This value is in units of Myrs.  If set
to a negative value, energy, mass and metals are injected gradually in the same way as is
done for StarParticleFeedback method = 1.  Default -1.






Molecular Hydrogen Regulated Star Formation

The parameters below are considered in StarParticleCreation method 11.


	H2StarMakerEfficiency (external)

	See Method 11: Molecular Hydrogen Regulated Star Formation.

	H2StarMakerNumberDensityThreshold (external)

	See Method 11: Molecular Hydrogen Regulated Star Formation.

	H2StarMakerMinimumMass (external)

	See Method 11: Molecular Hydrogen Regulated Star Formation.

	H2StarMakerMinimumH2FractionForStarFormation (external)

	See Method 11: Molecular Hydrogen Regulated Star Formation.

	H2StarMakerStochastic (external)

	See Method 11: Molecular Hydrogen Regulated Star Formation.

	H2StarMakerUseSobolevColumn (external)

	See Method 11: Molecular Hydrogen Regulated Star Formation.

	H2StarMakerSigmaOverR (external)

	See Method 11: Molecular Hydrogen Regulated Star Formation.

	H2StarMakerAssumeColdWarmPressureBalance (external)

	See Method 11: Molecular Hydrogen Regulated Star Formation.

	H2StarMakerH2DissociationFlux_MW (external)

	See Method 11: Molecular Hydrogen Regulated Star Formation.

	H2StarMakerH2FloorInColdGas (external)

	See Method 11: Molecular Hydrogen Regulated Star Formation.

	H2StarMakerColdGasTemperature (external)

	See Method 11: Molecular Hydrogen Regulated Star Formation.

	StarFormationOncePerRootGridTimeStep (external)

	See Method 11: Molecular Hydrogen Regulated Star Formation.






Population III Star Formation

The parameters below are considered in StarParticleCreation method 3.


	PopIIIStarMass (external)

	Stellar mass of Population III stars created in
StarParticleCreation method 3. Units of solar masses. The
luminosities and supernova energies are calculated from Schaerer
(2002) and Heger & Woosley (2002), respectively.

	PopIIIBlackHoles (external)

	Set to 1 to create black hole particles that radiate in X-rays for
stars that do not go supernova (< 140 solar masses and > 260 solar
masses). Default: 0.

	PopIIIBHLuminosityEfficiency (external)

	The radiative efficiency in which the black holes convert accretion
to luminosity. Default: 0.1.

	PopIIIOverDensityThreshold (external)

	The overdensity threshold (relative to the total mean density)
before Pop III star formation will be considered. Default: 1e6.

	PopIIIH2CriticalFraction (external)

	The H_2 fraction threshold before Pop III star formation will be
considered. Default: 5e-4.

	PopIIIMetalCriticalFraction (external)

	The metallicity threshold (relative to gas density, not solar)
before Pop III star formation will be considered. Note: this should
be changed to be relative to solar! Default: 1e-4.

	PopIIISupernovaRadius (external)

	If the Population III star will go supernova (140<M<260 solar
masses), this is the radius of the sphere to inject the supernova
thermal energy at the end of the star’s life. Units are in parsecs.
Default: 1.

	PopIIISupernovaUseColour (external)

	Set to 1 to trace the metals expelled from supernovae. Default: 0.

	PopIIIUseHypernovae (external)

	Set to 1 to use the hypernova energies and metal ejecta masses
from Nomoto et al. (2006).  If set to 0, then the supernova
energies are always 1e51 erg but use the supernova metal ejecta
masses from Nomoto et al. (2006).  Default: 1

	PopIIISupernovaExplosions (external)

	Set to 1 to consider supernovae from Pop III stars.  Set to 0 to
neglect all Pop III supernovae, regardless of their masses.
Default: 1

	PopIIIInitialMassFunction (external)

	When turned on, each Pop III stellar mass is randomly drawn from an IMF that is Salpeter above some characteristic mass and exponentially cutoff below this mass.  Default: 0

	PopIIIInitialMassFunctionSeed (external)

	Random initial seed for the Pop III stellar mass randomizer.  Default: INT_UNDEFINED

	PopIIILowerMassCutoff (external)

	Lower limit of the Pop III IMF.  Default: 1

	PopIIIUpperMassCutoff (external)

	Upper limit of the Pop III IMF.  Default: 300

	PopIIIInitialMassFunctionSlope (external)

	Slope of the Salpeter (high-mass) portion of the Pop III IMF.  Default: -1.3

	PopIIIInitialMassFunctionCalls (internal)

	Number of times a Pop III mass has been drawn from the IMF.  Used for restarts and reproducibility.  Default: 0

	PopIIISupernovaMustRefine (external)

	When turned on, the region around a star about to go supernova is refined to the maximum AMR level.  Experimental.  Default: 0

	PopIIISupernovaMustRefineResolution (external)

	Used with PopIIISupernovaMustRefine.  Minimum number of cells across the blastwave.  Default: 32

	PopIIIHeliumIonization (external)

	When turned on, Pop III stars will emit helium singly- and doubly-ionizing radiation.  Default: 0

	PopIIIColorDensityThreshold (external)

	Above this density, a Pop III “color” particle forms, and it will populate the surrounding region with a color field.  Units: mean density. Default: 1e6

	PopIIIColorMass (external)

	A Pop III “color” particle will populate the surrounding region with a mass of PopIIIColorMass.  Units: solar masses.  Default: 1e6






Radiative Star Cluster Formation

The parameters below are considered in StarParticleCreation method 5.


	StarClusterMinDynamicalTime (external)

	When determining the size of a star forming region, one method is
to look for the sphere with an enclosed average density that
corresponds to some minimum dynamical time. Observations hint that
this value should be a few million years. Units are in years.
Default: 1e7.

	StarClusterIonizingLuminosity (external)

	The specific luminosity of the stellar clusters. In units of
ionizing photons per solar mass. Default: 1e47.

	StarClusterSNEnergy (external)

	The specific energy injected into the gas from supernovae in the
stellar clusters. In units of ergs per solar mass. Default: 6.8e48
(Woosley & Weaver 1986).

	StarClusterSNRadius (external)

	This is the radius of the sphere to inject the supernova thermal
energy in stellar clusters. Units are in parsecs. Default: 10.

	StarClusterFormEfficiency (external)

	Fraction of gas in the sphere to transfer from the grid to the star
particle. Recall that this sphere has a minimum dynamical time set
by StarClusterMinDynamicalTime. Default: 0.1.

	StarClusterMinimumMass (external)

	The minimum mass of a star cluster particle before the formation is
considered. Units in solar masses. Default: 1000.

	StarClusterCombineRadius (external)

	It is possible to merge star cluster particles together within this
specified radius. Units in parsecs. This is probably not necessary
if ray merging is used. Originally this was developed to reduce the
amount of ray tracing involved from galaxies with hundreds of these
radiating particles. Default: 10.

	StarClusterUseMetalField (external)

	Set to 1 to trace ejecta from supernovae. Default: 0.

	StarClusterHeliumIonization (external)

	When turned on, stellar clusters will emit helium singly- and doubly-ionizing radiation.  Default: 0

	StarClusterRegionLeftEdge (external)

	Can restrict the region in which star clusters can form.  Origin of this region.  Default: 0 0 0

	StarClusterRegionRightEdge (external)

	Can restrict the region in which star clusters can form.  Right corner of this region.  Default: 1 1 1

	StarClusterUnresolvedModel (external)

	Regular star clusters live for 20 Myr, but this is only valid when molecular clouds are resolved.  When this parameter is on, the star formation rate is the same as the Cen & Ostriker exponential rate.  Default: 0






Massive Black Hole Particle Formation

The parameters below are considered in StarParticleCreation method 9.


	MBHInsertLocationFilename (external)

	The mass and location of the MBH particle that has to be inserted.
For example, the content of the file should be in the following
form. For details, see mbh_maker.src. Default:
mbh_insert_location.in

#order: MBH mass (in Ms), MBH location[3], MBH creation time
100000.0      0.48530579      0.51455688      0.51467896      0.0












Sink Formation and Feedback

The parameters below are considered in sink creation routines: sink_maker, star_maker8, star_maker9 (and occasionally only in certain set-ups).
Because many of the following parameters are not actively being tested and maintained, users are encouraged to carefully examine the code before using it.


	AccretionKernal (external)

	While this parameter is used to determine the accretion kernel in star_maker8.C, there is no choice other than 1 at the moment: Ruffert, ApJ (1994) 427 342 (a typo in the parameter name...).  Default: 0

	StellarWindFeedback (external)

	This parameter is used to turn on sink particle creation by star_maker8.C and also its feedback.  Currently implemented are: 1 - protostellar jets along the magnetic fields, 2 - protostellar jets along random directions, 3 - isotropic main sequence stellar wind, 4 - not implemented, 5 - not implemented, 6 - methods 2 and 3 combined.  Default: 0

	StellarWindTurnOnMass (external)

	This parameter is used to decide whether mass increase reached the ejection threshold for StellarWindFeedback=1, 2, or 6 in star_maker8.C. Default: 0.1

	MSStellarWindTurnOnMass (external)

	This parameter is used to decide whether mass increase reached the ejection threshold for StellarWindFeedback = 3 or 6 in star_maker8.C. Default: 10.0

	BigStarFormation (external)

	This parameter is used to turn on sink particle creation by star_maker9.C.

	BigStarFormationDone (external)

	In star_maker9.C, this parameter is used when we do not want to form BigStars any more.

	BigStarSeparation (external)

	In star_maker[89].C, if the newly-created sink particle is within a certain distance from the closest pre-existing sink, then add to it rather than creating a new one.

	SinkMergeDistance

	[not used]

	SinkMergeMass

	[not used]
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Radiation Parameters


Background Radiation Parameters


	RadiationFieldType (external)

	
This integer parameter specifies the type of radiation field that
is to be used. Except for RadiationFieldType = 9, which should
be used with MultiSpecies = 2, UV backgrounds can currently
only be used with MultiSpecies = 1 (i.e. no molecular H
support). The following values are used.  For field type 15, see
Table 3 in Haardt & Madau (2012) [http://adsabs.harvard.edu/abs/2012ApJ...746..125H/]. Default: 0


1  - Haardt & Madau spectrum with q_alpha = 1.5
2  - Haardt & Madau spectrum with q_alpha = 1.8
3  - Modified Haardt & Madau spectrum to match observations
     (Kirkman & Tytler 2005).
4  - Haardt & Madau spectrum with q_alpha = 1.5 supplemented with an X-ray Compton heating
     background from Madau & Efstathiou (see astro-ph/9902080)
9  - Constant molecular H2 photo-dissociation rate
10 - Internally computed radiation field using the algorithm of Cen & Ostriker
11 - Same as previous, but with very, very simple optical shielding fudge
12 - Haardt & Madau spectrum with q_alpha = 1.57
15 - Haardt & Madau 2012.







	RadiationFieldLevelRecompute (external)

	This integer parameter is used only if the previous parameter is
set to 10 or 11. It controls how often (i.e. the level at which)
the internal radiation field is recomputed. Default: 0

	RadiationSpectrumNormalization (external)

	This parameter was initially used to normalize the photo-ionization
and photo-heating rates computed in the function
RadiationFieldCalculateRates() and then passed on to the
calc_photo_rates(), calc_rad() and calc_rates() routines.
Later, the normalization as a separate input parameter was dropped
for all cases by using the rates computed in
RadiationFieldCalculateRates() with one exception: The molecular
hydrogen (H2) dissociation rate. There a normalization is performed
on the rate by multiplying it with RadiationSpectrumNormalization.
Default: 1e-21

	RadiationShield (external)

	This parameter specifies whether the user wants to employ
approximate radiative-shielding. This parameter will be
automatically turned on when RadiationFieldType is set to 11. When
set to 1, it calculates shielding for H/He. See
calc_photo_rates.src for more details.  When set to 2, it
shields only H2 with the Sobolev-like approximation from
Wolcott-Green et al. (2011).  Default: 0

	RadiationFieldRedshift (external)

	This parameter specifies the redshift at which the radiation field
is calculated.  If a UV radiation background is used in a
non-cosmological simulation, this needs to be defined.  Default:
(undefined)

	RadiationRedshiftOn (external)

	The redshift at which the UV
background turns on. Default: 7.0.

	RadiationRedshiftFullOn (external)

	The redshift at which the UV
background is at full strength.  Between z =
RadiationRedshiftOn and z = RadiationRedshiftFullOn, the
background is gradually ramped up to full strength. Default: 6.0.

	RadiationRedshiftDropOff (external)

	The redshift at which the
strength of the UV background is begins to gradually reduce,
reaching zero by RadiationRedshiftOff. Default: 0.0.

	RadiationRedshiftOff (external)

	The redshift at which the UV
background is fully off. Default: 0.0.

	TabulatedLWBackground (external)

	When on, the amplitude of the Lyman-Werner background is read from the file LW_J21.in as a function of redshift.  Each line should have the redshift and LW background in units of 1e-21 erg/cm^3/s/Hz/sr.  Default: 0

	AdjustUVBackground (external)

	Add description. Default: 1.

	AdjustUVBackgroundHighRedshift (external)

	Add description. Default: 0.

	SetUVAmplitude (external)

	Add description. Default: 1.0.

	SetHeIIHeatingScale (external)

	Add description. Default: 1.8.

	RadiationSpectrumSlope (external)

	Add description. Default: 1.5.






Radiative Transfer (Ray Tracing) Parameters


	RadiativeTransfer (external)

	Set to 1 to turn on the adaptive ray tracing following Abel, Wise &
Bryan 2007. Note that Enzo must be first recompiled after setting
make photon-yes. Default: 0.

	RadiativeTransferRadiationPressure (external)

	Set to 1 to turn on radiation pressure created from absorbed photon
packages. Default: 0

	RadiativeTransferInitialHEALPixLevel (external)

	Chooses how many rays are emitted from radiation sources. The
number of rays in Healpix are given through # =
12x4level. Default: 3.

	RadiativeTransferRaysPerCell (external)

	Determines the accuracy of the scheme by giving the minimum number
of rays to cross cells. The more the better (slower). Default: 5.1.

	RadiativeTransferSourceRadius (external)

	The radius at which the photons originate from the radiation
source. A positive value results in a radiating sphere. Default: 0.

	RadiativeTransferPropagationRadius (external)

	The maximum distance a photon package can travel in one timestep.
Currently unused. Default: 0.

	RadiativeTransferPropagationSpeed (external)

	The fraction of the speed of light at which the photons travel.
Default: 1.

	RadiativeTransferCoupledRateSolver (external)

	Set to 1 to calculate the new ionization fractions and gas energies
after every radiative transfer timestep. This option is highly
recommended to be kept on. If not, ionization fronts will propagate too
slowly. Default: 1.

	RadiativeTransferOpticallyThinH2 (external)

	Set to 1 to include an optically-thin H_2 dissociating
(Lyman-Werner) radiation field. Only used if MultiSpecies > 1. If
MultiSpecies > 1 and this option is off, the Lyman-Werner radiation
field will be calculated with ray tracing. Default: 1.

	RadiativeTransferSplitPhotonPackage (external)

	Once photons are past this radius, they can no longer split. In
units of kpc. If this value is negative (by default), photons can
always split. Default: FLOAT_UNDEFINED.

	RadiativeTransferHubbleTimeFraction (external)

	Photon packages are deleted when its associated photo-ionization
timescale, considering the limit when all photons are absorbed in
one cell, drops below a fraction (this parameter) of a Hubble
time.  This parameter can be safely set to 0.01 when ray merging
is used.  Default: 0.1

	RadiativeTransferFluxBackgroundLimit (external)

	When the flux of a photon package drops below a fraction (this
parameter) of the background radiation field, the ray is deleted.
Only used with ray merging.  Default: 0.01

	RadiativeTransferPhotonEscapeRadius (external)

	The number of photons that pass this distance from its source are
summed into the global variable EscapedPhotonCount[]. This variable
also keeps track of the number of photons passing this radius
multiplied by 0.5, 1, and 2. Units are in kpc. Not used if set to
0. Default: 0.

	RadiativeTransferSourceClustering (external)

	Set to 1 to turn on ray merging from combined virtual sources on a
binary tree. Default: 0.

	RadiativeTransferPhotonMergeRadius (external)

	The radius at which the rays will merge from their SuperSource,
which is the luminosity weighted center of two sources. This radius
is in units of the separation of two sources associated with one
SuperSource. If set too small, there will be angular artifacts in
the radiation field. Default: 2.5

	RadiativeTransferSourceBeamAngle (external)

	Rays will be emitted within this angle in degrees of the poles from sources with “Beamed” types.  Default: 30

	RadiativeTransferPeriodicBoundary (external)

	Set to 1 to turn on periodic boundary conditions for photon
packages. Default: 0.

	RadiativeTransferTimestepVelocityLimit (external)

	Limits the radiative transfer timestep to a minimum value that is
determined by the cell width at the finest level divided by this
velocity. Units are in km/s. Default: 100.

	RadiativeTransferTimestepVelocityLevel (external)

	Limit the ray tracing timestep by a sound crossing time (see
RadiativeTransferTimestepVelocityLimit) across a
cell on the level specified with this parameter.  Not used if
equal to INT_UNDEFINED (-99999).  Default: INT_UNDEFINED

	RadiativeTransferHIIRestrictedTimestep (external)

	Adaptive ray tracing timesteps will be restricted by a maximum change of 10% in neutral fraction if this parameter is set to 1.  If set to 2, then the incident flux can change by a maximum of 0.5 between cells.  See Wise & Abel (2011) in Sections 3.4.1 and 3.4.4 for more details.  Default: 0

	RadiativeTransferAdaptiveTimestep (external)

	Must be 1 when RadiativeTransferHIIRestrictedTimestep is non-zero.  When RadiativeTransferHIIRestrictedTimestep is 0, then the radiative transfer timestep is set to the timestep of the finest AMR level.  Default: 0

	RadiativeTransferLoadBalance (external)

	When turned on, the grids are load balanced based on the number of ray segments traced.  The grids are moved to different processors only for the radiative transfer solver.  Default: 0

	RadiativeTransferHydrogenOnly (external)

	When turned on, the photo-ionization fields are only created for hydrogen.  Default: 0

	RadiationXRaySecondaryIon (external)

	Set to 1 to turn on secondary ionizations and reduce heating from
X-ray radiation (Shull & van Steenberg 1985). Currently only BH and
MBH particles emit X-rays. Default: 0.

	RadiationXRayComptonHeating (external)

	Set to 1 to turn on Compton heating on electrons from X-ray
radiation (Ciotti & Ostriker 2001). Currently only BH and MBH
particles emit X-rays. Default: 0.

	RadiativeTransferInterpolateField (obsolete)

	A failed experiment in which we evaluate the density at the
midpoint of the ray segment in each cell to calculate the optical
depth. To interpolate, we need to calculate the vertex interpolated
density fields. Default: 0.

	SimpleQ (external)

	Ionizing photon luminosity of a “simple radiating source” that is independent of mass.  In units of photons per second.  Default: 1e50

	SimpleRampTime (external)

	Time to exponential ramp up the luminosity of a simple radiating source.  In units of 1e6 years.  Default: 0.1

	RadiativeTransferTraceSpectrum (reserved)

	reserved for future experimentation. Default: 0.

	RadiativeTransferTraceSpectrumTable (reserved)

	reserved for future experimentation. Default: spectrum_table.dat






Radiative Transfer (FLD) Parameters


	RadiativeTransferFLD (external)

	Set to 2 to turn on the fld-based radiation solvers following Reynolds,
Hayes, Paschos & Norman, 2009. Note that you also have to compile
the source using make photon-yes and a make
hypre-yes. Note that if FLD is turned on, it will force
RadiativeCooling = 0, GadgetEquilibriumCooling = 0, and
RadiationFieldType = 0 to prevent conflicts. Default: 0.

IMPORTANT: Set RadiativeTransfer = 0 to avoid conflicts with the ray tracing solver above.
Set RadiativeTransferOpticallyThinH2 = 0 to avoid conflicts with the built-in optically-thin H_2 dissociating field from the ray-tracing solver.



	ImplicitProblem (external)

	Set to 1 to turn on the implicit FLD solver, or 3 to turn on the
split FLD solver. Default: 0.

	RadHydroParamfile (external)

	Names the (possibly-different) input parameter file containing
solver options for the FLD-based solvers. These are described in
the relevant User Guides, located in doc/implicit_fld and
doc/split_fld. Default: NULL.

	RadiativeTransferFLDCallOnLevel (reserved)

	The level in the static AMR hierarchy where the unigrid FLD solver
should be called. Currently only works for 0 (the root grid).
Default: 0.

	StarMakerEmissivityField (external)

	When compiled with the FLD radiation transfer >make emissivity-yes; make hypre-yes, setting this to 1 turns on the emissivity field to source the gray radiation. Default: 0

	uv_param (external)

	When using the FLD radiation transfer and StarMakerEmissivityFIeld = 1, this is the efficiency of mass to UV light ratio. Default: 0






Radiative Transfer (FLD) Implicit Solver Parameters


These parameters should be placed within the file named in
RadHydroParamfile in the main parameter file. All are described in
detail in the User Guide in doc/implicit_fld.



	RadHydroESpectrum (external)

	
Type of assumed radiation spectrum for radiation field, Default: 1.


-1 - monochromatic spectrum at frequency h nu_{HI} = 13.6 eV
0  - power law spectrum, (nu / nu_{HI} )^(-1.5)
1  - T = 1e5 blackbody spectrum







	RadHydroChemistry (external)

	Use of hydrogen chemistry in ionization model, set to 1 to turn on
the hydrogen chemistry, 0 otherwise. Default: 1.

	RadHydroHFraction (external)

	Fraction of baryonic matter comprised of hydrogen. Default: 1.0.

	RadHydroModel (external)

	
Determines which set of equations to use within the solver.
Default: 1.


1  - chemistry-dependent model, with case-B hydrogen II recombination coefficient.
2  - chemistry-dependent model, with case-A hydrogen II recombination coefficient.
4  - chemistry-dependent model, with case-A hydrogen II
   recombination coefficient, but assumes an isothermal gas energy.
10 - no chemistry, instead uses a model of local thermodynamic
   equilibrium to couple radiation to gas energy.







	RadHydroMaxDt (external)

	maximum time step to use in the FLD solver. Default: 1e20 (no
limit).

	RadHydroMinDt (external)

	minimum time step to use in the FLD solver. Default: 0.0 (no
limit).

	RadHydroInitDt (external)

	initial time step to use in the FLD solver. Default: 1e20 (uses
hydro time step).

	RadHydroDtNorm (external)

	
type of p-norm to use in estimating time-accuracy for predicting
next time step. Default: 2.0.


 0 - use the max-norm.
>0 - use the specified p-norm.
<0 - illegal.







	RadHydroDtRadFac (external)

	Desired time accuracy tolerance for the radiation field. Default:
1e20 (unused).

	RadHydroDtGasFac (external)

	Desired time accuracy tolerance for the gas energy field. Default:
1e20 (unused).

	RadHydroDtChemFac (external)

	Desired time accuracy tolerance for the hydrogen I number density.
Default: 1e20 (unused).

	RadiationScaling (external)

	Scaling factor for the radiation field, in case standard
non-dimensionalization fails. Default: 1.0.

	EnergyCorrectionScaling (external)

	Scaling factor for the gas energy correction, in case standard
non-dimensionalization fails. Default: 1.0.

	ChemistryScaling (external)

	Scaling factor for the hydrogen I number density, in case standard
non-dimensionalization fails. Default: 1.0.

	RadiationBoundaryX0Faces (external)

	
Boundary condition types to use on the x0 faces of the radiation
field. Default: [0 0].


0 - Periodic.
1 - Dirichlet.
2 - Neumann.







	RadiationBoundaryX1Faces (external)

	Boundary condition types to use on the x1 faces of the radiation
field. Default: [0 0].

	RadiationBoundaryX2Faces (external)

	Boundary condition types to use on the x2 faces of the radiation
field. Default: [0 0].

	RadHydroLimiterType (external)

	
Type of flux limiter to use in the FLD approximation. Default: 4.


0 - original Levermore-Pomraning limiter, à la Levermore & Pomraning, 1981 and Levermore, 1984.
1 - rational approximation to LP limiter.
2 - new approximation to LP limiter (to reduce floating-point cancellation error).
3 - no limiter.
4 - ZEUS limiter (limiter 2, but with no "effective albedo").







	RadHydroTheta (external)

	Time-discretization parameter to use, 0 gives explicit Euler, 1
gives implicit Euler, 0.5 gives trapezoidal. Default: 1.0.

	RadHydroAnalyticChem (external)

	
Type of time approximation to use on gas energy and chemistry
equations. Default: 1 (if possible for model).


0 - use a standard theta-method.
1 - use an implicit quasi-steady state (IQSS) approximation.







	RadHydroInitialGuess (external)

	
Type of algorithm to use in computing the initial guess for the
time-evolved solution. Default: 0.


0 - use the solution from the previous time step (safest).
1 - use explicit Euler with only spatially-local physics (heating & cooling).
2 - use explicit Euler with all physics.
5 - use an analytic predictor based on IQSS approximation of
   spatially-local physics.







	RadHydroNewtTolerance (external)

	Desired accuracy for solution to satisfy nonlinear residual
(measured in the RMS norm). Default: 1e-6.

	RadHydroNewtIters (external)

	Allowed number of Inexact Newton iterations to achieve tolerance
before returning with FAIL. Default: 20.

	RadHydroINConst (external)

	Inexact Newton constant used in specifying tolerances for inner
linear solver. Default: 1e-8.

	RadHydroMaxMGIters (external)

	Allowed number of iterations for the inner linear solver (geometric
multigrid). Default: 50.

	RadHydroMGRelaxType (external)

	Relaxation method used by the multigrid solver. Default: 1.

::
1 - Jacobi.
2 - Weighted Jacobi.
3 - Red/Black Gauss-Seidel (symmetric).
4 - Red/Black Gauss-Seidel (non-symmetric).



	RadHydroMGPreRelax (external)

	Number of pre-relaxation sweeps used by the multigrid solver.
Default: 1.

	RadHydroMGPostRelax (external)

	Number of post-relaxation sweeps used by the multigrid solver.
Default: 1.

	EnergyOpacityC0, EnergyOpacityC1, EnergyOpacityC2, EnergyOpacityC3, EnergyOpacityC4 (external)

	Parameters used in defining the energy-mean opacity used with
RadHydroModel 10. Default: [1 1 0 1 0].

	PlanckOpacityC0, PlanckOpacityC1, PlanckOpacityC2, PlanckOpacityC3, PlanckOpacityC4 (external)

	Parameters used in defining the Planck-mean opacity used with
RadHydroModel 10. Default: [1 1 0 1 0].






Radiative Transfer (FLD) Split Solver Parameters


These parameters should be placed within the file named in
RadHydroParamfile in the main parameter file. All are described in
detail in the User Guide in doc/split_fld.



	RadHydroESpectrum (external)

	
Type of assumed radiation spectrum for radiation field, Default: 1.


1  - T=1e5 blackbody spectrum
0  - power law spectrum, ( nu / nu_{HI})^(-1.5)`
-1 - monochromatic spectrum at frequency h nu_{HI}= 13.6 eV
-2 - monochromatic spectrum at frequency h nu_{HeI}= 24.6 eV
-3 - monochromatic spectrum at frequency h nu_{HeII}= 54.4 eV







	RadHydroChemistry (external)

	
Use of primordial chemistry in computing opacities and
photo-heating/photo-ionization.  Default: 1.


0 no chemistry
1 hydrogen chemistry
3 hydrogen and helium chemistry







	RadHydroHFraction (external)

	Fraction of baryonic matter comprised of hydrogen. Default: 1.0.

	RadHydroModel (external)

	
Determines which set of equations to use within the solver.
Default: 1.


1  - chemistry-dependent model, with case-B hydrogen II recombination
     coefficient.
4  - chemistry-dependent model, with case-A hydrogen II recombination
     coefficient, but assumes an isothermal gas energy.
10 - no chemistry, instead uses a model of local thermodynamic
     equilibrium to couple radiation to gas energy.







	RadHydroMaxDt (external)

	maximum time step to use in the FLD solver. Default: 1e20 (no
limit).

	RadHydroMinDt (external)

	minimum time step to use in the FLD solver. Default: 0.0 (no
limit).

	RadHydroInitDt (external)

	initial time step to use in the FLD solver. Default: 1e20 (uses
hydro time step).

	RadHydroMaxSubcycles (external)

	desired number of FLD time steps per hydrodynamics time step (must
be greater than or equal to 1). This is only recommended if the
FLD solver is performing chemistry and heating internally, since
it will only synchronize with the ionization state at each
hydrodynamic time step.  When using Enzo’s chemistry and cooling
solvers this parameter should be set to 1 to avoid overly
decoupling radiation and chemistry.  Default: 1.0.

	RadHydroMaxChemSubcycles (external)

	desired number of chemistry time steps per FLD time step.  This
only applies if the FLD solver is performing chemistry and heating
internally, instead of using Enzo’s built-in routines for this
task. Default: 1.0.

	RadHydroDtNorm (external)

	
type of p-norm to use in estimating time-accuracy for predicting
next time step. Default: 2.0.


0  - use the max-norm.
>0 - use the specified p-norm.
<0 - illegal.







	RadHydroDtGrowth (external)

	Maximum growth factor in the FLD time step between successive
iterations. Default: 1.1 (10% growth).

	RadHydroDtRadFac (external)

	Desired time accuracy tolerance for the radiation field. Default:
1e20 (unused).

	RadHydroDtGasFac (external)

	Desired time accuracy tolerance for the gas energy field.  Only
used if the FLD solver is performing heating internally.  Default:
1e20 (unused).

	RadHydroDtChemFac (external)

	Desired time accuracy tolerance for the hydrogen I number
density.  Only used if the FLD solver is performing chemistry
internally.  Default: 1e20 (unused).

	RadiationScaling (external)

	Scaling factor for the radiation field, in case standard
non-dimensionalization fails. Default: 1.0.

	EnergyCorrectionScaling (external)

	Scaling factor for the gas energy correction, in case standard
non-dimensionalization fails. Default: 1.0.

	ChemistryScaling (external)

	Scaling factor for the hydrogen I number density, in case standard
non-dimensionalization fails. Default: 1.0.

	AutomaticScaling (external)

	Enables an heuristic approach in the FLD solver to update the
above scaling factors internally.  Works well for reioniztaion
calculations, but is not recommended for problems in which the
optimal unit scaling factor is known a-priori. Default: 1.0.

	RadiationBoundaryX0Faces (external)

	Boundary condition types to use on the x0 faces of the radiation
field. Default: [0 0].

0 - Periodic.
1 - Dirichlet.
2 - Neumann.







	RadiationBoundaryX1Faces (external)

	Boundary condition types to use on the x1 faces of the radiation
field. Default: [0 0].

	RadiationBoundaryX2Faces (external)

	Boundary condition types to use on the x2 faces of the radiation
field. Default: [0 0].

	RadHydroTheta (external)

	Time-discretization parameter to use, 0 gives explicit Euler, 1
gives implicit Euler, 0.5 gives trapezoidal. Default: 1.0.

	RadHydroKrylovMethod (external)

	Desired outer linear solver algorithm to use.  Default: 1.

0 - Preconditioned Conjugate Gradient (PCG)
1 - Stabilized Bi-Conjugate Gradient (BiCGStab)
2 - Generalized Minimum Residual (GMRES)







	RadHydroSolTolerance (external)

	Desired accuracy for solution to satisfy linear residual (measured
in the 2-norm). Default: 1e-8.

	RadHydroMaxMGIters (external)

	Allowed number of iterations for the inner linear solver (geometric
multigrid). Default: 50.

	RadHydroMGRelaxType (external)

	Relaxation method used by the multigrid solver. Default: 1.

0 - Jacobi
1 - Weighted Jacobi
2 - Red/Black Gauss-Seidel (symmetric)
3 - Red/Black Gauss-Seidel (non-symmetric)







	RadHydroMGPreRelax (external)

	Number of pre-relaxation sweeps used by the multigrid solver.
Default: 1.

	RadHydroMGPostRelax (external)

	Number of post-relaxation sweeps used by the multigrid solver.
Default: 1.

	EnergyOpacityC0, EnergyOpacityC1, EnergyOpacityC2 (external)

	Parameters used in defining the energy-mean opacity used with
RadHydroModel 10. Default: [1 1 0].
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Cosmology Parameters


	ComovingCoordinates (external)

	Flag (1 - on, 0 - off) that determines if comoving coordinates are
used or not. In practice this turns on or off the entire cosmology
machinery. Default: 0

	CosmologyFinalRedshift (external)

	This parameter specifies the redshift when the calculation will
halt. Default: 0.0

	CosmologyOmegaMatterNow (external)

	This is the contribution of all non-relativistic matter (including
HDM) to the energy density at the current epoch (z=0), relative to
the value required to marginally close the universe. It includes
dark and baryonic matter. Default: 0.279

	CosmologyOmegaLambdaNow (external)

	This is the contribution of the cosmological constant to the energy
density at the current epoch, in the same units as above. Default:
0.721

	CosmologyHubbleConstantNow (external)

	The Hubble constant at z=0, in units of 100 km/s/Mpc. Default:
0.701

	CosmologyComovingBoxSize (external)

	The size of the volume to be simulated in Mpc/h (at z=0). Default:
64.0

	CosmologyInitialRedshift (external)

	The redshift for which the initial conditions are to be generated.
Default: 20.0

	CosmologyMaxExpansionRate (external)

	This float controls the timestep so that cosmological terms are
accurate followed. The timestep is constrained so that the relative
change in the expansion factor in a step is less than this value.
Default: 0.01

	CosmologyCurrentRedshift (information only)

	This is not strictly speaking a parameter since it is never
interpreted and is only meant to provide information to the user.
Default: n/a
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Massive Black Hole Physics Parameters

Following parameters are for the accretion and feedback from the
massive black hole particle (PARTICLE_TYPE_MBH). Details
are described in Kim, Wise, Alvarez, and Abel (2011).


Accretion Physics


	MBHAccretion (external)

	Set to 1 to turn on accretion based on the Eddington-limited
spherical Bondi-Hoyle formula (Bondi 1952). Set to 2 to turn on
accretion based on the Bondi-Hoyle formula but with fixed
temperature defined below. Set to 3 to turn on accretion with a
fixed rate defined below. Set to 4 to to turn on accretion based on
the Eddington-limited spherical Bondi-Hoyle formula, but without
v_rel in the denominator. Set to 5 to turn on accretion based on
Krumholz et al.(2006) which takes vorticity into account. Set to 6
to turn on alpha disk formalism based on DeBuhr et al.(2010).
7 and 8 are still failed experiment. Add 10 to each of these options
(i.e. 11, 12, 13, 14) to ignore the Eddington limit. See
Star_CalculateMassAccretion.C. Default: 0 (FALSE)

	MBHAccretionRadius (external)

	This is the radius (in pc) of a gas sphere from which the accreting
mass is subtracted out at every timestep. Instead, you may want to
try set this parameter to -1, in which case an approximate Bondi
radius is calculated and used (from DEFAULT_MU and
MBHAccretionFixedTemperature). If set to -N, it will use N*(Bondi
radius). See CalculateSubtractionParameters.C. Default: 50.0

	MBHAccretingMassRatio (external)

	There are three different scenarios you can utilize this parameter.
(1) In principle this parameter is a nondimensional factor
multiplied to the Bondi-Hoyle accretion rate; so 1.0 should give
the plain Bondi rate. (2) However, if the Bondi radius is resolved
around the MBH, the local density used to calculate Mdot can be
higher than what was supposed to be used (density at the Bondi
radius!), resulting in the overestimation of Mdot. 0.0 <
MBHAccretingMassRatio < 1.0 can be used to fix this. (3) Or, one
might try using the density profile of R-1.5 to estimate
the density at the Bondi radius, which is utilized when
MBHAccretingMassRatio is set to -1. See
Star_CalculateMassAccretion.C. Default: 1.0

	MBHAccretionFixedTemperature (external)

	This parameter (in K) is used when MBHAccretion = 2. A fixed gas
temperature that goes into the Bondi-Hoyle accretion rate
estimation formula. Default: 3e5

	MBHAccretionFixedRate (external)

	This parameter (in Msun/yr) is used when MBHAccretion = 3. Default:
1e-3

	MBHTurnOffStarFormation (external)

	Set to 1 to turn off star formation (only for StarParicleCreation
method 7) in the cells where MBH particles reside. Default: 0
(FALSE)

	MBHCombineRadius (external)

	The distance (in pc) between two MBH particles in which two
energetically-bound MBH particles merge to form one particle.
Default: 50.0

	MBHMinDynamicalTime (external)

	Minimum dynamical time (in yr) for a MBH particle. Default: 1e7

	MBHMinimumMass (external)

	Minimum mass (in Msun) for a MBH particle. Default: 1e3






Feedback Physics


	MBHFeedback (external)

	
Set to 1 to turn on thermal feedback of MBH particles (MBH_THERMAL
- not fully tested). Set to 2 to turn on mechanical feedback of MBH
particles (MBH_JETS, bipolar jets along the total angular momentum
of gas accreted onto the MBH particle so far). Set to 3 to turn on
another version of mechanical feedback of MBH particles (MBH_JETS,
always directed along z-axis). Set to 4 to turn on experimental version of
mechanical feedback (MBH_JETS, bipolar jets along the total angular
momentum of gas accreted onto the MBH particle so far + 10 degree random
noise).  Set to 5 to turn on experimental version of mechanical feedback
(MBH_JETS, launched at random direction). Note that, even when this
parameter is set to 0, MBH particles still can be radiation sources
if RadiativeTransfer is on. See Grid_AddFeedbackSphere.C.
Default: 0 (FALSE)


``RadiativeTransfer = 0`` & ``MBHFeedback = 0`` : no feedback at all
``RadiativeTransfer = 0`` & ``MBHFeedback = 1`` : purely thermal feedback
``RadiativeTransfer = 0`` & ``MBHFeedback = 2`` : purely mechanical feedback
``RadiativeTransfer = 1`` & ``MBHFeedback = 0`` : purely radiative feedback
``RadiativeTransfer = 1`` & ``MBHFeedback = 2`` : radiative and
  mechanical feedback combined (one has to change the following
  ``MBHFeedbackRadiativeEfficiency`` parameter accordingly, say from 0.1
  to 0.05, to keep the same total energy across different modes of
  feedback)







	MBHFeedbackRadiativeEfficiency (external)

	The radiative efficiency of a black hole. 10% is the widely
accepted value for the conversion rate from the rest-mass energy of
the accreting material to the feedback energy, at the innermost
stable orbit of a non-spinning Schwarzschild black hole (Shakura &
Sunyaev 1973, Booth & Schaye 2009). Default: 0.1

	MBHFeedbackEnergyCoupling (external)

	The fraction of feedback energy that is thermodynamically (for
MBH_THERMAL) or mechanically (for MBH_JETS) coupled to the gas.
0.05 is widely used for thermal feedback (Springel et al. 2005, Di
Matteo et al. 2005), whereas 0.0001 or less is recommended for
mechanical feedback depending on the resolution of the simulation
(Ciotti et al. 2009). Default: 0.05

	MBHFeedbackMassEjectionFraction (external)

	The fraction of accreting mass that is returning to the gas phase.
For either MBH_THERMAL or MBH_JETS. Default: 0.1

	MBHFeedbackMetalYield (external)

	The mass fraction of metal in the ejected mass. Default: 0.02

	MBHFeedbackThermalRadius (external)

	The radius (in pc) of a sphere in which the energy from
MBH_THERMAL feedback is deposited. If set to a negative value, the
radius of a sphere gets bigger in a way that the sphere encloses
the constant mass (=
4/3*pi*(-MBHFeedbackThermalRadius)3 Msun). The latter
is at the moment very experimental; see Star_FindFeedbackSphere.C.
Default: 50.0

	MBHFeedbackJetsThresholdMass (external)

	The bipolar jets by MBH_JETS feedback are injected every time the
accumulated ejecta mass surpasses MBHFeedbackJetsThresholdMass (in
Msun). Although continuously injecting jets into the gas cells
might sound great, unless the gas cells around the MBH are resolved
down to Mdot, the jets make little or no dynamical impact on the
surrounding gas. By imposing MBHFeedbackJetsThresholdMass, the jets
from MBH particles are rendered intermittent, yet dynamically
important. Default: 10.0

	MBHParticleIO (external)

	Set to 1 to print out basic information about MBH particles. Will
be automatically turned on if MBHFeedback is set to 2 or 3.
Default: 0 (FALSE)

	MBHParticleIOFilename (external)

	The name of the file used for the parameter above. Default:
mbh_particle_io.dat
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Shock Finding Parameters

For details on shock finding in Enzo see Shock Finding.


	ShockMethod (external)

	This parameter controls the use and type of shock finding. Default: 0

0 - Off
1 - Temperature Dimensionally Unsplit Jumps
2 - Temperature Dimensionally Split Jumps
1 - Velocity Dimensionally Unsplit Jumps
2 - Velocity Dimensionally Split Jumps







	ShockTemperatureFloor (external)

	When calculating the mach number using temperature jumps, set the
temperature floor in the calculation to this value.

	StorePreShockFields (external)

	Optionally store the Pre-shock Density and Temperature during data output.

	FindShocksOnlyOnOutput (external)

	0: Finds shocks during Evolve Level and just before writing out data. 1: Only find shocks just before writing out data.  2: Only find shocks during EvolveLevel. Default: 0
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Cosmic Ray Two-Fluid Model Parameters

For details on the cosmic ray solver in Enzo see Cosmic Ray Two-Fluid Model.


	CRModel (external)

	This parameter turns on the model. Default: 0

0 - Off
1 - On







	CRgamma

	For CR equation of state. Default: 4.0/3.0 (relativistic, adiabatic gas)

	CRDiffusion (external)

	
Switches on diffusion of the cosmic ray energy density. Default: 0


0 - Off
1 - On with constant coefficient (CRkappa)



	CRkappa (external)

	Cosmic ray diffusion coefficient in CGS units (cm^2/s), Default: 0.0. For MW-like galaxies: 1E28.

	CRCourantSafetyNumber (external)

	Multiplies CR diffusion timestep, for stability should be <= 0.5. Default: 0.5

	CRFeedback (external)

	Specify fraction of star formation feedback energy should be diverted into the cosmic
ray energy density. implemented ONLY for star_maker3 (feedback method 2). Default: 0.0

	CRdensFloor (external)

	Floor in gas density, can be imposed, for speed purposes (default 0.0 = off). Any value
larger than 0.0 is on with that value as the floor in code units.
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Conduction

Isotropic and anisotropic thermal conduction are implemented using the
method of Parrish and Stone: namely, using an explicit, forward
time-centered algorithm.  In the anisotropic conduction, heat can only
conduct along magnetic field lines.  One can turn on the two types of
conduction independently, since there are situations where one might
want to use both.  The Spitzer fraction can be also set
independently for the isotropic and anisotropic conduction.  Running a
cosmological simulation with conduction on can be tricky as the timesteps
can become very short.  It is recommended that you look carefully at all the
available conduction parameters.  Additionally, if you intend to run with
star particles, it is highly recommended that you set the parameter,
StarMakerTimeIndependentFormation.  See the description in
Star Formation and Feedback Parameters for more information.


	IsotropicConduction (external)

	Turns on isotropic thermal conduction using Spitzer conduction.  Default: 0 (FALSE)

	AnisotropicConduction (external)

	Turns on anisotropic thermal conduction using Spitzer conduction.
Can only be used if MHD is turned on (HydroMethod = 4).
Default: 0 (FALSE)

	IsotropicConductionSpitzerFraction (external)

	Prefactor that goes in front of the isotropic Spitzer conduction
coefficient.  Should be a value between 0 and 1.
Default: 1.0

	AnisotropicConductionSpitzerFraction (external)

	Prefactor that goes in front of the anisotropic Spitzer conduction
coefficient.  Should be a value between 0 and 1.
Default: 1.0

	ConductionCourantSafetyNumber (external)

	This is a prefactor that controls the stability of the conduction
algorithm.  In its current explicit formulation, it must be set to
a value of 0.5 or less.
Default: 0.5

	SpeedOfLightTimeStepLimit (external)

	When used, this sets a floor for the conduction timestep to be the local light crossing time (dx / c).  This prevents the conduction machinery from prescribing extremely small timesteps.  While this can technically violate the conduction stability criterion, testing has shown that this does not result in notable differences.  (1 - ON; 0 - OFF)  Default: 0 (OFF).

	ConductionDynamicRebuildHierarchy (external)

	Using conduction can often result in the code taking extremely short timesteps.  Since the hierarchy is rebuilt each timestep, this can exacerbate memory fragmentation issues and slow the simulation.  In the case where the conduction timestep is the limiter, the hierarchy should not need to be rebuilt every timestep since conduction mostly does not alter the fields which control refinement.  When this option is used, the timestep calculation is carried out as usual, but the hierarchy is only rebuilt on a timescale that is calculated neglecting the conduction timestep.  This results in a decent speedup and reduced memory fragmentation when running with conduction.  (1 - ON; 0 - OFF)  Default: 0 (OFF).

	ConductionDynamicRebuildMinLevel (external)

	The minimum level on which the dynamic hierarcy rebuild is performed.  Default: 0.
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Inline Analysis


Inline Halo Finding

Enzo can find dark matter (sub)halos on the fly with a
friends-of-friends (FOF) halo finder and a subfind method,
originally written by Volker Springel. All output files will be
written in the directory FOF/.


	InlineHaloFinder (external)

	Set to 1 to turn on the inline halo finder. Default: 0.

	HaloFinderSubfind (external)

	Set to 1 to find subhalos inside each dark matter halo found in the
friends-of-friends method. Default: 0.

	HaloFinderOutputParticleList (external)

	Set to 1 to output a list of particle positions and IDs for each
(sub)halo. Written in HDF5. Default: 0.

	HaloFinderMinimumSize (external)

	Minimum number of particles to be considered a halo. Default: 50.

	HaloFinderLinkingLength (external)

	Linking length of particles when finding FOF groups. In units of
cell width of the finest static grid, e.g. unigrid -> root cell
width. Default: 0.1.

	HaloFinderCycleSkip (external)

	Find halos every Nth top-level timestep, where N is this
parameter. Not used if set to 0. Default: 3.

	HaloFinderTimestep (external)

	Find halos every dt = (this parameter). Only evaluated at each
top-level timestep. Not used if negative. Default: -99999.0

	HaloFinderRunAfterOutput (external)

	When turned on, the inline halo finder is run after an output is written.  Default: 0

	HaloFinderLastTime (internal)

	Last time of a halo find. Default: 0.






Inline Python


	PythonTopGridSkip (external)

	How many top grid cycles should we skip between calling python at the top of the hierarchy?  Only works with python-yes in compile settings.

	PythonSubcycleSkip (external)

	How many subgrid cycles should we skip between calling python at the bottom of the hierarchy?

	PythonReloadScript (external)

	Should “user_script.py” be reloaded in between Python calls?

	NumberOfPythonCalls (internal)

	Internal parameter tracked by Enzo

	NumberOfPythonTopGridCalls (internal)

	Internal parameter tracked by Enzo

	NumberOfPythonSubcycleCalls (internal)

	Internal parameter tracked by Enzo
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Other Parameters


Other External Parameters


	huge_number (external)

	The largest reasonable number. Rarely used. Default: 1e+20

	tiny_number (external)

	A number which is smaller than all physically reasonable numbers.
Used to prevent divergences and divide-by-zero in C++ functions.
Modify with caution! Default: 1e-20.

An independent analog, tiny, defined in fortran.def, does the same
job for a large family of FORTRAN routines. Modification of tiny must
be done with caution and currently requires recompiling the code, since
tiny is not a runtime parameter.



	TimeActionParameter[#]

	Reserved for future use.

	TimeActionRedshift[#]

	Reserved for future use.

	TimeActionTime[#]

	Reserved for future use.

	TimeActionType[#]

	Reserved for future use.

	StopSteps

	Reserved for future use

	CoolDataf0to3

	Reserved for future use

	StageInput

	Reserved for future use

	LocalPath

	Reserved for future use

	GlobalPath

	Reserved for future use






Other Internal Parameters


	TimeLastDataDump (internal)

	The code time at which the last time-based output occurred.

	TimeLastInterpolatedDataDump (internal)

	The code time at which the last interpolated data dump occurred.

	CycleLastDataDump (internal)

	The last cycle on which a cycle dump was made

	SubcycleLastDataDump (internal)

	The last cycle on which a subcycle dump was made

	TimeLastMovieDump (internal)

	The code time at which the last movie dump occurred.

	TimeLastTracerParticleDump (internal)

	The code time at which the last tracer particle dump occurred.

	TimeLastRestartDump

	Reserved for future use.

	TimeLastHistoryDump

	Reserved for future use.

	CycleLastRestartDump

	Reserved for future use.

	CycleLastHistoryDump

	Reserved for future use.

	InitialCPUTime

	Reserved for future use.

	InitialCycleNumber (internal)

	The current cycle

	SubcycleNumber (internal)

	The current subcycle

	DataDumpNumber (internal)

	The identification number of the next output file (the 0000 part of
the output name). This is used and incremented by both the cycle
based and time based outputs. Default: 0

	MovieDumpNumber (internal)

	The identification number of the next movie output file. Default: 0

	TracerParticleDumpNumber (internal)

	The identification number of the next tracer particle output file. Default: 0

	RestartDumpNumber

	Reserved for future use.

	HistoryDumpNumber

	Reserved for future use.

	DataLabel[#] (internal)

	These are printed out into the restart dump parameter file. One
Label is produced per baryon field with the name of that baryon
field. The same labels are used to name data sets in HDF files.

	DataUnits[#]

	Reserved for future use.

	VersionNumber (internal)

	Sets the version number of the code which is written out to restart
dumps.
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Problem Type Parameters


	ProblemType (external)

	This integer specifies the type of problem to be run. Its value
causes the correct problem initializer to be called to set up the
grid, and also may trigger certain boundary conditions or other
problem-dependent routines to be called. The possible values are
listed below. Default: none.



For other problem-specific parameters follow the links below.  The problems
marked with “hydro_rk” originate from the MUSCL solver package in the enzo installation directory
src/enzo/hydro_rk.  For the 4xx radiation hydrodynamics problem types, see
the user guides in the installation directory doc/implicit_fld and doc/split_fld.


Shock Tube (1: unigrid and AMR)


Riemann problem or arbitrary discontinuity breakup problem. The
discontinuity initially separates two arbitrary constant states:
Left and Right. Default values correspond to the so called Sod
Shock Tube setup (test 1.1). A table below contains a series of
recommended 1D tests for hydrodynamic method, specifically designed
to test the performance of the Riemann solver, the treatment of
shock waves, contact discontinuities, and rarefaction waves in a
variety of situations (Toro 1999, p. 129).

It is also possible to set up a second discontinuity, creating three
initial regions, rather than the two regions of the original Sod Shock
Tube.

Test  LeftDensity LeftVelocity LeftPressure RightDensity RightVelocity RightPressure
1.1   1.0         0.0          1.0          0.125        0.0           0.1
1.2   1.0         -2.0         0.4          1.0          2.0           0.4
1.3   1.0         0.0          1000.0       1.0          0.0           0.01
1.4   1.0         0.0          0.01         1.0          0.0           100.0
1.5   5.99924     19.5975      460.894      5.99242      -6.19633      46.0950









	HydroShockTubesInitialDiscontinuity (external)

	The position of the initial discontinuity. Default: 0.5

	HydroShockTubesSecondDiscontinuity (external)

	The position of the second discontinuity, if a second discontinuity is
desired. Default: FLOAT_UNDEFINED, i.e. no second discontinuity.

	HydroShockTubesLeftDensity, HydroShockTubesRightDensity, HydroShockTubesCenterDensity (external)

	The initial gas density to the left and right of the discontinuity,
and between the discontinuities if a second discontinuity has been
specified with HydroShockTubesSecondDiscontinuity.  Default: 1.0 for each
value.

	HydroShockTubesLeftPressure, HydroShockTubesRightPressure, HydroShockTubesCenterPressure (external)

	The initial gas density to the left and right of the discontinuity,
and between the discontinuities if a second discontinuity has been
specified with HydroShockTubesSecondDiscontinuity.  Default: 1.0 for
each of the left, right, and center regions.

	HydroShockTubesLeftVelocityX, HydroShockTubesLeftVelocityY, HydroShockTubesLeftVelocityZ (external)

	The initial gas velocity, in the x-, y-, and z-directions to the left of
the discontinuity.  Default: 0.0 for all directions.

	HydroShockTubesRightVelocityX, HydroShockTubesRightVelocityY, HydroShockTubesRightVelocityZ (external)

	The initial gas velocity, in the x-, y-, and z-directions to the right of
the discontinuity.  Default: 0.0 for all directions.

	HydroShockTubesCenterVelocityX, HydroShockTubesCenterVelocityY, HydroShockTubesCenterVelocityZ (external)

	The initial gas velocity, in the x-, y-, and z-directions between the
discontinuities, used if a second discontinuity has been specified with
HydroShockTubesSecondDiscontinuity. Default: 1.0 for all directions.






Wave Pool (2)


Wave Pool sets up a simulation with a 1D sinusoidal wave entering
from the left boundary. The initial active region is uniform and
the wave is entered via inflow boundary conditions.



	WavePoolAmplitude (external)

	The amplitude of the wave. Default: 0.01 - a linear wave.

	WavePoolAngle (external)

	Direction of wave propagation with respect to x-axis. Default: 0.0

	WavePoolDensity (external)

	Uniform gas density in the pool. Default: 1.0

	WavePoolNumberOfWaves (external)

	The test initialization will work for one wave only. Default: 1

	WavePoolPressure (external)

	Uniform gas pressure in the pool. Default: 1.0

	WavePoolSubgridLeft, WavePoolSubgridRight (external)

	Start and end positions of the subgrid. Default: 0.0 and 0.0 (no
subgrids)

	WavePoolVelocity1(2,3) (external)

	x-,y-, and z-velocities. Default: 0.0 (for all)

	WavePoolWavelength (external)

	The wavelength. Default: 0.1 (one-tenth of the box)






Shock Pool (3: unigrid 2D, AMR 2D and unigrid 3D)


The Shock Pool test sets up a system which introduces a shock from
the left boundary. The initial active region is uniform, and the
shock wave enters via inflow boundary conditions. 2D and 3D
versions available. (D. Mihalas & B.W. Mihalas, Foundations of
Radiation Hydrodynamics, 1984, p. 236, eq. 56-40.)



	ShockPoolAngle (external)

	Direction of the shock wave propagation with respect to x-axis.
Default: 0.0

	ShockPoolDensity (external)

	Uniform gas density in the preshock region. Default: 1.0

	ShockPoolPressure (external)

	Uniform gas pressure in the preshock region. Default: 1.0

	ShockPoolMachNumber (external)

	The ratio of the shock velocity and the preshock sound speed.
Default: 2.0

	ShockPoolSubgridLeft, ShockPoolSubgridRight (external)

	Start and end positions of the subgrid. Default: 0.0 and 0.0 (no
subgrids)

	ShockPoolVelocity1(2,3) (external)

	Preshock gas velocity (the Mach number definition above assumes a
zero velocity in the laboratory reference frame. Default: 0.0 (for
all components)






Double Mach Reflection (4)


A test for double Mach reflection of a strong shock (Woodward &
Colella 1984). Most of the parameters are “hardwired”: d0 = 8.0, e0
= 291.25, u0 = 8.25*sqrt(3.0)/2.0, v0 = -8.25*0.5, w0 = 0.0



	DoubleMachSubgridLeft (external)

	Start position of the subgrid. Default: 0.0

	DoubleMachSubgridRight (external)

	End positions of the subgrid. Default: 0.0






Shock in a Box (5)


A stationary shock front in a static 3D subgrid (Anninos et al.
1994). Initialization is done as in the Shock Tube test.



	ShockInABoxBoundary (external)

	Position of the shock. Default: 0.5

	ShockInABoxLeftDensity, ShockInABoxRightDensity (external)

	Densities to the right and to the left of the shock front. Default:
dL=1.0 and dR = dL*((Gamma+1)*m^2)/((Gamma-1)*m^2 + 2), where
m=2.0 and speed=0.9*sqrt(Gamma*pL/dL)*m.

	ShockInABoxLeftVelocity, ShockInABoxRightVelocity (external)

	Velocities to the right and to the left of the shock front.
Default: vL=shockspeed and
vR=shockspeed-m*sqrt(Gamma*pL/dL)*(1-dL/dR), where m=2.0,
shockspeed=0.9*sqrt(Gamma*pL/dL)*m.

	ShockInABoxLeftPressure, ShockInABoxRightPressure (external)

	Pressures to the Right and to the Left of the shock
front. Default: pL=1.0 and pR=pL*(2.0*Gamma*m^2 -
(Gamma-1))/(Gamma+1), where m=2.0.

	ShockInABoxSubgridLeft, ShockInABoxSubgridRight (external)

	Start and end positions of the subgrid. Default: 0.0 (for both)






Implosion (6)


The implosion test sets up a converging shock problem in a square domain
(x,y) in (0, 0.3)x(0, 0.3) with gas initially at rest. Initial
pressure and density is 1 everywhere except for a triangular region
(0.15,0)(0.15,0) where d=0.125 and p=0.14. Reflecting boundary conditions
at all boundaries. Adiabatic index gamma=1.4.

If AMR is used, a hierarchy of subgrids (one per level) will be generated
at start-up to properly resolve the initial discontinuity.


	REFERENCE: Hui Li and Z. Li, JCP 153, 596, 1999.

	Chang et al. JCP 160, 89, 1999.







	ImplosionDensity (external)

	Initial density. Default: 1.0

	ImplosionPressure (external)

	Initial pressure. Default: 1.0

	ImplosionDimaondDensity (external)

	Initial density within diamond. Default: 0.125

	ImplosionDimaondPressure (external)

	Initial pressure within diamond. Default: 0.14

	ImplosionSubgridLeft, ImplosionSubgridRight (external)

	Start and position of the subgrid. Default: 0.0 (for both)






Sedov Blast (7)


Self-similar solution: L.I. Sedov (1946);
see also: Sedov (1959), Similarity and Dimensional Methods
in Mechanics, pp. 210, 219, 228;
see also: Landau & Lifshitz, Fluid Dynamics, Sect. 99
“The Propagation of Strong Shock Waves” (1959).
Experiments, terrestrial/numerical: Taylor (1941, 1949).



	SedovBlastFullBox (external)

	Full box or one quadrant. Default: 0

	SedovBlastType (external)

	2D. Default: 0

	SedovBlastInitialTime (external)

	Initial time. Default: 0

	SedovBlastDensity (external)

	Initial density. Default: 1.0

	SedovBlastPressure (external)

	Initial pressure. Default: 1e-5

	SedovBlastInputEnergy (external)

	Energy input into system. Default: 1.0

	SedovBlastEnergyZones (external)

	Default: 3.5

	SedovBlastSubGridLeft, SedovBlastSubGridRight (external)

	Start and end position of the subgrid. Default: 0.0 (for both)






Kelvin-Helmholtz Instability (8)


This problem sets up a 2D box with periodic boundary conditions containing
two fluids (inner fluid and outer fluid).  The inner fluid has a positive
velocity and the outer fluid has a negative velocity with a difference of
KHVelocityJump.  The two fluids typically have different densities.
The result is the build up of KH instabilities along the interface between
the two fluids.

Setting KHRamp to 0, creates the standard KH test problem
where there is a discontinuous jump between the two fluids in
x-velocity and density.  Random perturbations in y-velocity are the seeds
to the KH instability resulting in growth of multiple modes of the KHI.

Setting KHRamp to 1 modifies the ICs so that there is a smooth
ramp connecting the two fluids in x-velocity and density of width
KHRampWidth.  A sinusoidal perturbation in y-velocity is the seed
to the KH instability resulting in only growth of k=2 modes.
These results converge in behavior as resolution is increased, whereas
the standard ICs do not.  The ramped ICs are based on Robertson, Kravtsov,
Gnedin, Abel & Rudd 2010, but that work has a typo in the ramp equation,
and this implementation matches Robertson’s actual ICs.





	KHInnerDensity, KHOuterDensity (external)

	Initial density. Default: 2.0 (inner) and 1.0 (outer)

	KHInnerPressure, KHOuterPressure (external)

	Initial pressure. Default: 2.5 (for both)

	KHBulkVelocity (external)

	The bulk velocity of both fluids relative to the grid.  Default: 0.0

	KHVelocityJump (external)

	The difference in velocity between the outer fluid and the inner fluid.
Inner fluid will have half this value and move to the right (positive),
whereas outer fluid will have have this value and move to the left
(negative).  Total fluid velocities will combine this jump with
KHBulkVelocity.  Default: 1.0

	KHPerturbationAmplitude (external)

	Default: 0.1

	KHRamp (external)

	Whether to use ramped ICs or not.  Default: 1

	KHRampWidth (external)

	The width in y-space of the transition ramp.  Default: 0.05

	KHRandomSeed (external)

	The seed for the Mersennes random number generator.  This is only
used in the case of the KHRamp=0 ICs.  By using the same seed
from one run to the next, one can reproduce previous behavior with
identical parameter files.  Default: 123456789






2D/3D Noh Problem (9)


Liska & Wendroff, 2003, SIAM J. Sci. Comput. 25, 995,
Section 4.5, Fig. 4.4.



	NohProblemFullBox (external)

	Default: 0

	NohSubgridLeft, NohSubgridRight (external)

	Start and end positon of the subgrid. Default: 0.0 (for both)






Rotating Cylinder (10)


A test for the angular momentum conservation of a collapsing
cylinder of gas in an AMR simulation. Written by Brian O’Shea
(oshea@msu.edu).



	RotatingCylinderOverdensity (external)

	Density of the rotating cylinder with respect to the
background. Default: 20.0

	RotatingCylinderSubgridLeft, RotatingCylinderSubgridRight (external)

	This pair of floating point numbers creates a subgrid region at the
beginning of the simulation that will be refined to
MaximumRefinementLevel. It should probably encompass the whole
cylinder. Positions are in units of the box, and it always creates
a cube. No default value (meaning off).

	RotatingCylinderLambda (external)

	Angular momentum of the cylinder as a dimensionless quantity. This
is identical to the angular momentum parameter lambda that is
commonly used to describe cosmological halos. A value of 0.0 is
non-rotating, and 1.0 means that the gas is already approximately
rotating at the Keplerian value. Default: 0.05

	RotatingCylinderTotalEnergy (external)

	Sets the default gas energy of the ambient medium, in Enzo internal
units. Default: 1.0

	RotatingCylinderRadius (external)

	Radius of the rotating cylinder in units of the box size. Note that
the height of the cylinder is equal to the diameter. Default: 0.3

	RotatingCylinderCenterPosition (external)

	Position of the center of the cylinder as a vector of floats.
Default: (0.5, 0.5, 0.5)






Radiating Shock (11)


This is a test problem similar to the Sedov test problem documented
elsewhere, but with radiative cooling turned on (and the ability to
use MultiSpecies and all other forms of cooling). The main
difference is that there are quite a few extras thrown in,
including the ability to initialize with random density
fluctuations outside of the explosion region, use a Sedov blast
wave instead of just thermal energy, and some other goodies (as
documented below).



	RadiatingShockInnerDensity (external)

	Density inside the energy deposition area (Enzo internal units).
Default: 1.0

	RadiatingShockOuterDensity (external)

	Density outside the energy deposition area (Enzo internal units).
Default: 1.0

	RadiatingShockPressure (external)

	Pressure outside the energy deposition area (Enzo internal units).
Default: 1.0e-5

	RadiatingShockEnergy (external)

	Total energy deposited (in units of 1e51 ergs). Default: 1.0

	RadiatingShockSubgridLeft, RadiatingShockSubgridRight (external)

	Pair of floats that defines the edges of the region where the
initial conditions are refined to MaximumRefinementLevel. No
default value.

	RadiatingShockUseDensityFluctuation (external)

	Initialize external medium with random density fluctuations.
Default: 0

	RadiatingShockRandomSeed (external)

	Seed for random number geneator (currently using Mersenne Twister).
Default: 123456789

	RadiatingShockDensityFluctuationLevel (external)

	Maximum fractional fluctuation in the density level. Default: 0.1

	RadiatingShockInitializeWithKE (external)

	Initializes the simulation with some initial kinetic energy if
turned on (0 - off, 1 - on). Whether this is a simple sawtooth or a
Sedov profile is controlled by the parameter
RadiatingShockUseSedovProfile. Default: 0

	RadiatingShockUseSedovProfile (external)

	If set to 1, initializes simulation with a Sedov blast wave profile
(thermal and kinetic energy components). If this is set to 1, it
overrides all other kinetic energy-related parameters. Default: 0

	RadiatingShockSedovBlastRadius (external)

	Maximum radius of the Sedov blast, in units of the box size.
Default: 0.05

	RadiatingShockKineticEnergyFraction (external)

	Fraction of the total supernova energy that is deposited as kinetic
energy. This only is used if RadiatingShockInitializeWithKE is set
to 1. Default: 0.0

	RadiatingShockCenterPosition (external)

	Vector of floats that defines the center of the explosion. Default:
(0.5, 0.5, 0.5)

	RadiatingShockSpreadOverNumZones (external)

	Number of cells that the shock is spread over. This corresponds to
a radius of approximately N * dx, where N is the number of cells
and dx is the resolution of the highest level of refinement. This
does not have to be an integer value. Default: 3.5






Free Expansion (12)

This test sets up a blast wave in the free expansion stage. There
is only kinetic energy in the sphere with the radial velocity
proportional to radius. If let evolve for long enough, the problem
should turn into a Sedov-Taylor blast wave.


	FreeExpansionFullBox (external)

	Set to 0 to have the blast wave start at the origin with reflecting
boundaries. Set to 1 to center the problem at the domain center
with periodic boundaries. Default: 0

	FreeExpansionMass (external)

	Mass of the ejecta in the blast wave in solar masses. Default: 1

	FreeExpansionRadius (external)

	Initial radius of the blast wave. Default: 0.1

	FreeExpansionDensity (external)

	Ambient density of the problem. Default: 1

	FreeExpansionEnergy (external)

	Total energy of the blast wave in ergs. Default: 1e51

	FreeExpansionMaxVelocity (external)

	Maximum initial velocity of the blast wave (at the outer radius).
If not set, a proper value is calculated using the formula in
Draine & Woods (1991). Default: FLOAT_UNDEFINED

	FreeExpansionTemperature (external)

	Ambient temperature of the problem in K. Default: 100

	FreeExapnsionBField (external)

	Initial uniform magnetic field. Default: 0 0 0

	FreeExpansionVelocity (external)

	Initial velocity of the ambient medium. Default: 0 0 0

	FreeExpansionSubgridLeft (external)

	Leftmost edge of the region to set the initial refinement. Default: 0

	FreeExpansionSubgridRight (external)

	Rightmost edge of the region to set the initial refinement.
Default: 0






Rotating Sphere (14)

A test originally created to study star formation. Sets up a rotating,
turbulent sphere of gas within an NFW halo. For details of the setup
process, see Meece (2014).


	RotatingSphereNFWMass (external)

	The mass of the NFW halo within R200 in solar masses.
Default: 1.0e+7 M_sun

	RotatingSphereNFWConcentration (external)

	The NFW Concentration parameter, defined as virial radius over scale radius (R200/Rs).
Default: 2.0

	RotatingSphereCoreRadius (external)

	Radius of the core region in code units. The core radius is used as the break in the
density profile. Gas within the core is set up in HSE, while outside the core temperature
increases adiabatically with density.
Default: 16 pc

	RotatingSphereCentralDensity (external)

	This is the scaling density for the density profile in code units. The density profile is defined as
rho(r) = rho_center * (r/Rc)^-alpha * (1+r/Rc)^(alpha-beta) where rho_center is this
parameters, Rc is the core radius, alpha is the core exponent (below) and beta is the
outer exponent (also below).
Default: 1

	RotatingSphereCoreDensityExponent (external)

	The density scaling exponent in the core. Within the core, density approximately goes as
(r/Rc)^-alpha, were alpha is this parameter.
Default: 0.1

	RotatingSphereOuterDensityExponent (external)

	The density scaling exponent in the outer regions. Outside of the core, density
approximately goes as (r/Rc)^-beta, were alpha is this parameter.
Default: 2.5

	RotatingSphereExteriorTemperature (external)

	This is the temperature in K of gas outside the sphere, defined as the region where
density would drop below the critical density.
Default: 200.0

	RotatingSphereSpinParameter (external)

	The Baryonic spin parameter, defined as Lambda = (J * abs(E)^(1/2)) / (G M^(5/2)),
where J is the total (gas) angular momentum, E is the binding energy of the gas due
to the gas and dark matter, M is the gas mas, and G is the gravitational constant.
All quantities are defined relative to the edge of the sphere defined above.
Default: 0.05

	RotatingSphereAngularMomentumExponent (external)

	This is the power law index of the scaling relation for specific angular momentum
as a function of mass enclosed. l scales as (M/M_T)^chi where chi is this parameter.
Default: 0.9

	RotatingSphereUseTurbulence (external)

	0 = No Turbulence, 1 = Use Turbulence. If using turbulence, you need a file called
turbulence.in, which can be generated using the file turbulence_generator.py in the
RotatingSphere problem in the run directory.
Default: 0

	RotatingSphereTurbulenceRMS (external)

	The RMS velocity of the turbulence is normalized to some fraction of the virial sound
speed of the halo, as determined from the virial temperature of the halo. This parameter
is that fraction. If RotatingSphereUseTurbulence == 0, this parameters is ignored.
Default: 0.01

	RotatingSphereRedshift (external)

	The redshift is mainly used to determine the critical density of the universe. The problem
generator assumes a cosmology with Omega_L=0.7, Omega_M = 0.3, and H0 = 70 km/s/mpc. Small
variations in cosmology should not have a large effect on the properties of the sphere.
Default: 20.0






Zeldovich Pancake (20)


A test for gas dynamics, expansion terms and self-gravity in both
linear and non-linear regimes [Bryan thesis (1996),
Sect. 3.3.4-3.3.5; Norman & Bryan (1998), Sect. 4]



	ZeldovichPancakeCentralOffset (external)

	Offset of the pancake plane. Default: 0.0 (no offset)

	ZeldovichPancakeCollapseRedshift (external)

	A free parameter which determines the epoch of caustic formation.
Default: 1.0

	ZeldovichPancakeDirection (external)

	Orientation of the pancake. Type: integer. Default: 0 (along the
x-axis)

	ZeldovichPancakeInitialTemperature (external)

	Initial gas temperature. Units: degrees Kelvin. Default: 100

	ZeldovichPancakeOmegaBaryonNow (external)

	Omega Baryon at redshift z=0; standard setting. Default: 1.0

	ZeldovichPancakeOmegaCDMNow (external)

	Omega CDM at redshift z=0. Default: 0 (assumes no dark matter)






Pressureless Collapse (21)


An 1D AMR test for the gravity solver and advection routines: the
two-sided one-dimensional collapse of a homogeneous plane parallel
cloud in Cartesian coordinates. Isolated boundary conditions.
Gravitational constant G=1; free fall time 0.399. The expansion
terms are not used in this test. (Bryan thesis 1996, Sect. 3.3.1).



	PressurelessCollapseDirection (external)

	Coordinate direction. Default: 0 (along the x-axis).

	PressurelessCollapseInitialDensity (external)

	Initial density (the fluid starts at rest). Default: 1.0






Adiabatic Expansion (22)


A test for time-integration accuracy of the expansion terms (Bryan
thesis 1996, Sect. 3.3.3).



	AdiabaticExpansionInitialTemperature (external)

	Initial temperature for Adiabatic Expansion test; test example
assumes 1000 K. Default: 200. Units: degrees Kelvin

	AdiabaticExpansionInitialVelocity (external)

	Initial expansion velocity. Default: 100. Units: km/s

	AdiabaticExpansionOmegaBaryonNow (external)

	Omega Baryon at redshift z=0; standard value 1.0. Default: 1.0

	AdiabaticExpansionOmegaCDMNow (external)

	Omega CDM at redshift z=0; default setting assumes no dark matter.
Default: 0.0






Test Gravity (23)


We set up a system in which there is one grid point with mass in
order to see the resulting acceleration field. If finer grids are
specified, the mass is one grid point on the subgrid as well.
Periodic boundary conditions are imposed (gravity).



	TestGravityDensity (external)

	Density of the central peak. Default: 1.0

	TestGravityMotionParticleVelocity (external)

	Initial velocity of test particle(s) in x-direction. Default: 1.0

	TestGravityNumberOfParticles (external)

	The number of test particles of a unit mass. Default: 0

	TestGravitySubgridLeft, TestGravitySubgridRight (external)

	Start and end positions of the subgrid. Default: 0.0 and 0.0 (no
subgrids)

	TestGravityUseBaryons (external)

	Boolean switch. Type: integer. Default: 0 (FALSE)






Spherical Infall (24)


A test based on Bertschinger’s (1985) 3D self-similar spherical
infall solution onto an initially overdense perturbation in an
Einstein-de Sitter universe.



	SphericalInfallCenter (external)

	Coordinate(s) for the accretion center. Default: top grid center

	SphericalInfallFixedAcceleration (external)

	Boolean flag. Type: integer. Default: 0 (FALSE)

	SphericalInfallFixedMass (external)

	Mass used to calculate the acceleration from spherical infall
(GM/(4*pi*r^3*a)). Default: If SphericalInfallFixedMass is
undefined and SphericalInfallFixedAcceleration == TRUE, then
SphericalInfallFixedMass = SphericalInfallInitialPerturbation * TopGridVolume

	SphericalInfallInitialPerturbation (external)

	The perturbation of initial mass density. Default: 0.1

	SphericalInfallOmegaBaryonNow (external)

	Omega Baryon at redshift z=0; standard setting. Default: 1.0

	SphericalInfallOmegaCDMNow (external)

	Omega CDM at redshift z=0. Default: 0.0 (assumes no dark matter)
Default: 0.0

	SphericalInfallSubgridIsStatic (external)

	Boolean flag. Type: integer. Default: 0 (FALSE)

	SphericalInfallSubgridLeft, SphericalInfallSubgridRight (external)

	Start and end positions of the subgrid. Default: 0.0 and 0.0 (no
subgrids)

	SphericalInfallUseBaryons (external)

	Boolean flag. Type: integer. Default: 1 (TRUE)






Test Gravity: Sphere (25)


Sets up a 3D spherical mass distribution and follows its evolution
to test the gravity solver.



	TestGravitySphereCenter (external)

	The position of the sphere center. Default: at the center of the
domain

	TestGravitySphereExteriorDensity (external)

	The mass density outside the sphere. Default: tiny_number

	TestGravitySphereInteriorDensity (external)

	The mass density at the sphere center. Default: 1.0

	TestGravitySphereRadius (external)

	Radius of self-gravitating sphere. Default: 0.1

	TestGravitySphereRefineAtStart (external)

	Boolean flag. Type: integer. Default: 0 (FALSE)

	TestGravitySphereSubgridLeft, TestGravitySphereSubgridRight (external)

	Start and end positions of the subgrid. Default: 0.0 and 0.0 (no
subgrids)

	TestGravitySphereType (external)

	Type of mass density distribution within the sphere. Options
include: (0) uniform density distrubution within the sphere radius;
(1) a power law with an index -2.0; (2) a power law with an index
-2.25 (the exact power law form is, e.g., r-2.25, where
r is measured in units of TestGravitySphereRadius). Default: 0
(uniform density)

	TestGravitySphereUseBaryons (external)

	Boolean flag. Type: integer . Default: 1 (TRUE)






Gravity Equilibrium Test (26)


Sets up a hydrostatic exponential atmosphere with the pressure=1.0
and density=1.0 at the bottom. Assumes constant gravitational
acceleration (uniform gravity field).



	GravityEquilibriumTestScaleHeight (external)

	The scale height for the exponential atmosphere . Default: 0.1






Collapse Test (27)


A self-gravity test.



	CollapseTestInitialTemperature (external)

	Initial gas temperature. Default: 1000 K. Units: degrees Kelvin

	CollapseTestInitialFractionHII (external)

	Initial HII fraction in the domain except for the spheres.
Default: 1.2e-5

	CollapseTestInitialFractionHeII (external)

	Initial HeII fraction in the domain except for the spheres.
Default: 1e-14

	CollapseTestInitialFractionHeIII (external)

	Initial HeIII fraction in the domain except for the spheres.
Default: 1e-17

	CollapseTestInitialFractionHM (external)

	Initial H- fraction in the domain except for the spheres.
Default: 2e-9

	CollapseTestInitialFractionH2I (external)

	Initial H2I fraction in the domain except for the spheres.
Default: 2e-20

	CollapseTestInitialFractionH2II (external)

	Initial H2II fraction in the domain except for the spheres.
Default: 3e-14

	CollapseTestNumberOfSpheres (external)

	Number of spheres to collapse; must be <= MAX_SPHERES=10 (see
Grid.h for definition). Default: 1

	CollapseTestRefineAtStart (external)

	Boolean flag. Type: integer. If TRUE, then initializing routine
refines the grid to the desired level. Default: 1 (TRUE)

	CollapseTestUseColour (external)

	Boolean flag. Type: integer. Default: 0 (FALSE)

	CollapseTestUseParticles (external)

	Boolean flag. Type: integer. Default: 0 (FALSE)

	CollapseTestSphereCoreRadius (external)

	An array of core radii for collapsing spheres. Default: 0.1 (for
all spheres)

	CollapseTestSphereDensity (external)

	An array of density values for collapsing spheres. Default: 1.0
(for all spheres)

	CollapseTestSpherePosition (external)

	A two-dimensional array of coordinates for sphere centers. Type:
float[MAX_SPHERES][MAX_DIMENSION]. Default for all spheres:
0.5*(DomainLeftEdge[dim] + DomainRightEdge[dim])

	CollapseTestSphereRadius (external)

	An array of radii for collapsing spheres. Default: 1.0 (for all
spheres)

	CollapseTestSphereTemperature (external)

	An array of temperatures for collapsing spheres. Default: 1.0.
Units: degrees Kelvin

	CollapseTestSphereType (external)

	An integer array of sphere types. Default: 0

	CollapseTestSphereVelocity (external)

	A two-dimensional array of sphere velocities. Type:
float[MAX_SPHERES][MAX_DIMENSION]. Default: 0.0

	CollapseTestUniformVelocity (external)

	Uniform velocity. Type: float[MAX_DIMENSION]. Default: 0 (for all
dimensions)

	CollapseTestSphereMetallicity (external)

	Metallicity of the sphere in solar metallicity. Default: 0.

	CollapseTestFracKeplerianRot (external)

	Rotational velocity of the sphere in units of Keplerian velocity,
i.e. 1 is rotationally supported. Default: 0.

	CollapseTestSphereTurbulence (external)

	Turbulent velocity field sampled from a Maxwellian distribution
with the temperature specified in
CollapseTestSphereTemperature
This parameter multiplies the turbulent velocities by its value.
Default: 0.

	CollapseTestSphereDispersion (external)

	If using particles, this parameter multiplies the velocity
dispersion of the particles by its value. Only valid in sphere type
8 (cosmological collapsing sphere from a uniform density). Default:
0.

	CollapseTestSphereCutOff (external)

	At what radius to terminate a Bonner-Ebert sphere. Units? Default:
6.5

	CollapseTestSphereAng1 (external)

	Controls the initial offset (at r=0) of the rotational axis. Units
in radians. Default: 0.

	CollapseTestSphereAng2 (external)

	Controls the outer offset (at r=SphereRadius of the rotational
axis. In both CollapseTestSphereAng1 and
CollapseTestSphereAng2 are set, the rotational axis linearly
changes with radius between CollapseTestSphereAng1 and
CollapseTestSphereAng2.  Units in radians. Default: 0.

	CollapseTestSphereConstantPressure (external)

	Constant pressure inside the sphere that is equal to the pressure
at the outer radius.  Default: 0

	CollapseTestSphereSmoothSurface (external)

	The density interface between the ambient and sphere medium is
smoothed with a hyperbolic tangent.  Default: 0

	CollapseTestSmoothRadius (external)

	The outer radius of the smoothed interface.  This parameter is in
units of the sphere radius.  Default: 1.2

	CollapseTestSphereHIIFraction (external)

	Initial HII fraction of the sphere.  Default: 1.2e-5

	CollapseTestSphereHeIIFraction (external)

	Initial HeII fraction of the sphere.  Default: 1e-14

	CollapseTestSphereHeIIIFraction (external)

	Initial HeIII fraction of the sphere.  Default: 1e-17

	CollapseTestSphereHMFraction (external)

	Initial H- fraction of the sphere.  Default: 2e-9

	CollapseTestSphereH2IFraction (external)

	Initial H2I fraction of the sphere.  Default: 2e-20

	CollapseTestSphereH2IIFraction (external)

	Initial H2II fraction of the sphere.  Default: 3e-14

	CollapseTestSphereInitialLevel (external)

	Failed experiment to try to force refinement to a specified level.
Not working. Default: 0.






Test Gravity Motion (28)


	TestGravityMotionParticleVelocity (external)

	Initial velocity for particle. Default: 1.0






Test Orbit (29)


	TestOrbitNumberOfParticles (external)

	Number of test particles. Default: 1

	TestOrbitRadius (external)

	Initial radius of orbit. Default: 0.2

	TestOrbitCentralMass (external)

	Central mass. Default: 1.0

	TestOrbitTestMass (external)

	Mass of the test particle. Default: 1.0e-6

	TestOrbitUseBaryons (external

	Boolean flag. (not implemented) Default: FALSE






Cosmology Simulation (30)


A sample cosmology simulation.



	CosmologySimulationDensityName (external)

	This is the name of the file which contains initial data for baryon
density. Type: string. Example: GridDensity. Default: none

	CosmologySimulationTotalEnergyName (external)

	This is the name of the file which contains initial data for total
energy. Default: none

	CosmologySimulationGasEnergyName (external)

	This is the name of the file which contains initial data for gas
energy. Default: none

	CosmologySimulationVelocity[123]Name (external)

	These are the names of the files which contain initial data for gas
velocities. Velocity1 - x-component; Velocity2 - y-component;
Velocity3 - z-component. Default: none

	CosmologySimulationParticleMassName (external)

	This is the name of the file which contains initial data for
particle masses. Default: none

	CosmologySimulationParticlePositionName (external)

	This is the name of the file which contains initial data for
particle positions. Default: none

	CosmologySimulationParticleVelocityName (external)

	This is the name of the file which contains initial data for
particle velocities. Default: none

	CosmologySimulationParticleVelocity[123]Name (external) This is

	the name of the file which contains initial data for particle
velocities but only has one component per file. This is more
useful with very large (>=20483) datasets. Currently
one can only use this in conjunction with
CosmologySimulationCalculatePositions.  because it expects a
3D grid structure instead of a 1D list of particles.  Default:
None.

	CosmologySimulationCalculatePositions (external)

	If set to 1, Enzo will calculate the particle positions in one of
two ways: 1) By using a linear Zeldo’vich approximation based on
the particle velocities and a displacement factor [dln(growth
factor) / dtau, where tau is the conformal time], which is stored
as an attribute in the initial condition files, or 2) if the user
has also defined either
CosmologySimulationParticleDisplacementName or
CosmologySimulationParticleDisplacement[123]Name, by reading in
particle displacements from an external code and applying those
directly.  The latter allows the use of non-linear displacements.
Default: 0.

	CosmologySimulationParticleDisplacementName (external)

	This is the name of the file which contains initial data for
particle displacements. Default: none

	CosmologySimulationParticleDisplacement[123]Name (external) This

	is the name of the file which contains initial data for particle
displacements but only has one component per file. This is more
useful with very large (>=20483) datasets. Currently
one can only use this in conjunction with
CosmologySimulationCalculatePositions.  because it expects a
3D grid structure instead of a 1D list of particles.  Default:
None.

	CosmologySimulationNumberOfInitialGrids (external)

	The number of grids at startup. 1 means top grid only. If >1, then
nested grids are to be defined by the following parameters.
Default: 1

	CosmologySimulationSubgridsAreStatic (external)

	Boolean flag, defines whether the subgrids introduced at the
startup are static or not. Type: integer. Default: 1 (TRUE)

	CosmologySimulationGridLevel (external)

	An array of integers setting the level(s) of nested subgrids. Max
dimension MAX_INITIAL_GRIDS is defined in
CosmologySimulationInitialize.C as 10. Default for all subgrids: 1,
0 - for the top grid (grid #0)

	CosmologySimulationGridDimension[#] (external)

	An array (arrays) of 3 integers setting the dimensions of nested
grids. Index starts from 1. Max number of subgrids
MAX_INITIAL_GRIDS is defined in CosmologySimulationInitialize.C
as 10. Default: none

	CosmologySimulationGridLeftEdge[#] (external)

	An array (arrays) of 3 floats setting the left edge(s) of nested
subgrids. Index starts from 1. Max number of subgrids
MAX_INITIAL_GRIDS is defined in CosmologySimulationInitialize.C
as 10. Default: none

	CosmologySimulationGridRightEdge[#] (external)

	An array (arrays) of 3 floats setting the right edge(s) of nested
subgrids. Index starts from 1. Max number of subgrids
MAX_INITIAL_GRIDS is defined in CosmologySimulationInitialize.C
as 10. Default: none

	CosmologySimulationUseMetallicityField (external)

	Boolean flag. Type: integer. Default: 0 (FALSE)

	CosmologySimulationInitialFractionH2I (external)

	The fraction of molecular hydrogen (H_2) at InitialRedshift. This
and the following chemistry parameters are used if MultiSpecies is
defined as 1 (TRUE). Default: 2.0e-20

	CosmologySimulationInitialFractionH2II (external)

	The fraction of singly ionized molecular hydrogen (H2+) at
InitialRedshift. Default: 3.0e-14

	CosmologySimulationInitialFractionHeII (external)

	The fraction of singly ionized helium at InitialRedshift. Default:
1.0e-14

	CosmologySimulationInitialFractionHeIII (external)

	The fraction of doubly ionized helium at InitialRedshift. Default:
1.0e-17

	CosmologySimulationInitialFractionHII (external)

	The fraction of ionized hydrogen at InitialRedshift. Default:
1.2e-5

	CosmologySimulationInitialFractionHM (external)

	The fraction of negatively charged hydrogen (H-) at
InitialRedshift. Default: 2.0e-9

	CosmologySimulationInitialFractionMetal (external)

	The fraction of metals at InitialRedshift. Default: 1.0e-10

	CosmologySimulationInitialTemperature (external)

	A uniform temperature value at InitialRedshift (needed if the
initial gas energy field is not supplied). Default: 550*((1.0 +
InitialRedshift)/201)2

	CosmologySimulationOmegaBaryonNow (external)

	This is the contribution of baryonic matter to the energy density
at the current epoch (z=0), relative to the value required to
marginally close the universe. Typical value 0.06. Default: 1.0

	CosmologySimulationOmegaCDMNow (external)

	This is the contribution of CDM to the energy density at the
current epoch (z=0), relative to the value required to marginally
close the universe. Typical value 0.24. Default: 0.0 (no dark
matter)

	CosmologySimulationManuallySetParticleMassRatio (external)

	This binary flag (0 - off, 1 - on) allows the user to manually set
the particle mass ratio in a cosmology simulation. Default: 0 (Enzo
automatically sets its own particle mass)

	CosmologySimulationManualParticleMassRatio (external)

	This manually controls the particle mass in a cosmology simulation,
when CosmologySimulationManuallySetParticleMassRatio is set to 1.
In a standard Enzo simulation with equal numbers of particles and
cells, the mass of a particle is set to
CosmologySimulationOmegaCDMNow/CosmologySimulationOmegaMatterNow,
or somewhere around 0.85 in a WMAP-type cosmology. When a different
number of particles and cells are used (128 particles along an edge
and 256 cells along an edge, for example) Enzo attempts to
calculate the appropriate particle mass. This breaks down when
ParallelRootGridIO and/or ParallelParticleIO are turned on,
however, so the user must set this by hand. If you have the ratio
described above (2 cells per particle along each edge of a 3D
simulation) the appropriate value would be 8.0 (in other words,
this should be set to (number of cells along an edge) / (number of
particles along an edge) cubed. Default: 1.0.






Isolated Galaxy Evolution (31)


Initializes an isolated galaxy, as per the Tasker & Bryan series of
papers.



	GalaxySimulationRefineAtStart (external)

	Controls whether or not the simulation is refined beyond the root
grid at initialization. (0 - off, 1 - on). Default: 1

	GalaxySimulationInitialRefinementLevel (external)

	Level to which the simulation is refined at initialization,
assuming GalaxySimulationRefineAtStart is set to 1. Default: 0

	GalaxySimulationSubgridLeft, GalaxySimulationSubgridRight (external)

	Vectors of floats defining the edges of the volume which is refined
at start. No default value.

	GalaxySimulationUseMetallicityField (external)

	Turns on (1) or off (0) the metallicity field. Default: 0

	GalaxySimulationInitialTemperature (external)

	Initial temperature that the gas in the simulation is set to.
Default: 1000.0

	GalaxySimulationUniformVelocity (external)

	Vector that gives the galaxy a uniform velocity in the ambient
medium. Default: (0.0, 0.0, 0.0)

	GalaxySimulationDiskRadius (external)

	Radius (in Mpc) of the galax disk. Default: 0.2

	GalaxySimulationGalaxyMass (external)

	Dark matter mass of the galaxy, in Msun. Needed to initialize the
NFW gravitational potential. Default: 1.0e+12

	GalaxySimulationGasMass (external)

	Amount of gas in the galaxy, in Msun. Used to initialize the
density field in the galactic disk. Default: 4.0e+10

	GalaxySimulationDiskPosition (external)

	Vector of floats defining the center of the galaxy, in units of the
box size. Default: (0.5, 0.5, 0.5)

	GalaxySimulationDiskScaleHeightz (external)

	Disk scale height, in Mpc. Default: 325e-6

	GalaxySimulationDiskScaleHeightR (external)

	Disk scale radius, in Mpc. Default: 3500e-6

	GalaxySimulationDarkMatterConcentrationParameter (external)

	NFW dark matter concentration parameter. Default: 12.0

	GalaxySimulationDiskTemperature (external)

	Temperature of the gas in the galactic disk. Default: 1.0e+4

	GalaxySimulationInflowTime (external)

	Controls inflow of gas into the box. It is strongly suggested that
you leave this off. Default: -1 (off)

	GalaxySimulationInflowDensity (external)

	Controls inflow of gas into the box. It is strongly suggested that
you leave this off. Default: 0.0

	GalaxySimulationAngularMomentum (external)

	Unit vector that defines the angular momentum vector of the galaxy
(in other words, this and the center position define the plane of
the galaxy). This _MUST_ be set! Default: (0.0, 0.0, 0.0)

	GalaxySimulationRPSWind (external)

	This flag turns on the ram pressure stripped (RPS) wind in the
GalaxySimulation problem and sets the mode.  0 = off, 1 = on with
simple constant wind values, 2 = on with RPS values set from a
file with the name ICMinflow_data.in.  For the file input case,
the file should consist of a set of lines with each line
specifying a 6 columns consisting of time, wind density, wind
temperature, wind x/y/z velocity.  All units in the file are
assumed to be CGS and wind values are applied at the time
indicated to the corner of the box, with linear interpolation
between key frames.  See Salem et al. (2015) for a worked example.
Default: 0

	GalaxySimulationRPSWindShockSpeed (external)

	This is speed of the RPS driven shock (which differs from the
wind velocity), to be used to determine where and when to apply
the appropriate wind boundary condition on the boundary.  Code units.
Default: 0.0

	GalaxySimulationRPSWindDelay (external)

	This is a delay (in code units) for the RPS wind to be applied
(for example to give time for the galaxy to relax).
Default: 0.0

	GalaxySimulationRPSWindDensity (external)

	For case 1, this is the density of the RPS wind, in code units.
Default: 1.0

	GalaxySimulationRPSWindtotalEnergy (external)

	For case 1, this is the total energy of the RPS wind, in code units.
Default: 1.0

	GalaxySimulationRPSWindPressure (external)

	For case 1, this is the pressutre of the RPS wind (unused).
Default: 1.0

	GalaxySimulationRPSWindVelocity (external)

	For case 1, This is the wind velocity (code units)
Default: 0 0 0

	GalaxySimulationRPSWindPreWindDensity (external)

	This is the density applied to the boundary before the wind arrives.
Default: 1.0

	GalaxySimulationRPSWindPreWindTotalEnergy (external)

	This is the total energy applied to the boundary before the wind arrives.
Default: 1.0

	GalaxySimulationRPSWindPreWindVelocity (external)

	This is the velocity vector applied to the boundary before the
wind arrives.
Default:






Shearing Box Simulation (35)


	ShearingBoxProblemType (external)

	Value of 0 starts a sphere advection through the shearing box test.
Value of 1 starts a standard Balbus & Hawley shearing box
simulation. Default: 0

	ShearingBoxRefineAtStart (external)

	Refine the simulation at start. Default: 1.0

	ThermalMagneticRatio (external)

	Plasma beta (Pressure/Magnetic Field
Energy) Default: 400.0

	FluctuationAmplitudeFraction (external)

	The magnitude of the sinusoidal velocity perturbations as a
fraction of the angular velocity. Default: 0.1

	ShearingBoxGeometry (external)

	Defines the radius of the sphere for ShearingBoxProblemType =
0, and the frequency of the velocity fluctuations (in units of
2pi) for ShearingBoxProblemType = 1.  Default: 2.0






Supernova Restart Simulation (40)


All of the supernova parameters are to be put into a restart dump
parameter file. Note that ProblemType must be reset to 40,
otherwise these are ignored.



	SupernovaRestartEjectaCenter[#] (external)

	Input is a trio of coordinates in code units where the supernova’s
energy and mass ejecta will be centered. Default: FLOAT_UNDEFINED

	SupernovaRestartEjectaEnergy (external)

	The amount of energy instantaneously output in the simulated
supernova, in units of 1e51 ergs. Default: 1.0

	SupernovaRestartEjectaMass (external)

	The mass of ejecta in the supernova, in units of solar masses.
Default: 1.0

	SupernovaRestartEjectaRadius (external)

	The radius over which the above two parameters are spread. This is
important because if it’s too small the timesteps basically go to
zero and the simulation takes forever, but if it’s too big then you
loose information. Units are parsecs. Default: 1.0 pc

	SupernovaRestartName (external)

	This is the name of the restart data dump that the supernova
problem is initializing from.

	SupernovaRestartColourField

	Reserved for future use.






Photon Test (50)


This test problem is modeled after Collapse Test (27), and thus
borrows all of its parameters that control the setup of spheres.
Replace CollapseTest with PhotonTest in the sphere parameters, and
it will be recognized. However there are parameters that control
radiation sources, which makes this problem unique from collapse
test. The radiation sources are fixed in space.



	PhotonTestNumberOfSources (external)

	Sets the number of radiation sources. Default: 1.

	PhotonTestSourceType (external)

	Sets the source type. No different types at the moment. Default: 0.

	PhotonTestSourcePosition (external)

	Sets the source position. Default: 0.5*(DomainLeftEdge + DomainRightEdge)

	PhotonTestSourceLuminosity (external)

	Sets the source luminosity in units of photons per seconds.
Default: 0.

	PhotonTestSourceLifeTime (external)

	Sets the lifetime of the source in units of code time. Default: 0.

	PhotonTestSourceRampTime (external)

	If non-zero, the source will exponentially increase its luminosity
until it reaches the full luminosity when the age of the source
equals this parameter. Default: 0.

	PhotonTestSourceEnergyBins (external)

	Sets the number of energy bins in which the photons are emitted
from the source. Default: 4.

	PhotonTestSourceSED (external)

	An array with the fractional luminosity in each energy bin. The sum
of this array must equal to one. Default: 1 0 0 0

	PhotonTestSourceEnergy (external)

	An array with the mean energy in each energy bin. Units are in eV.
Default: 14.6 25.6 56.4 12.0 (i.e. HI ionizing, HeI ionizing, HeII
ionizing, Lyman-Werner)

	PhotonTestSourceType (external)

	Indicates what radiation type (1 = isotropic, -2 = Beamed, -3 =
Episodic). Default: 0

	PhotonTestSourceOrientation (external)

	Normal direction in Cartesian axes of beamed radiation (type =
-2).  Default = 0 0 1

	PhotonTestInitialFractionHII (external)

	Sets the initial ionized fraction of hydrogen. Default: 1.2e-5

	PhotonTestInitialFractionHeII (external)

	Sets the initial singly-ionized fraction of helium. Default: 1e-14

	PhotonTestInitialFractionHeIII (external)

	Sets the initial doubly-ionized fraction of helium. Default: 1e-17

	PhotonTestInitialFractionHM (external)

	Sets the initial fraction of H-. Default: 2e-9

	PhotonTestInitialFractionH2I (external)

	Sets the initial neutral fraction of H2. Default: 2e-20

	PhotonTestInitialFractionH2II (external)

	Sets the initial ionized fraction of H2. Default: 3e-14

	PhotonTestOmegaBaryonNow (obsolete)

	Default: 0.05.

	PhotonTestDensityFilename (external)

	Filename of an external density field in HDF5 format.  The file
should only have one dataset. Default: (undefined)

	PhotonTestHIIFractionFilename (external)

	Filename of an external HII fraction field in its own HDF5 format.
The file should only have one dataset.  Default: (undefined)

	PhotonTestHeIIFractionFilename (external)

	Filename of an external HeII fraction field in its own HDF5 format.
The file should only have one dataset.  Default: (undefined)

	PhotonTestHeIIIFractionFilename (external)

	Filename of an external HeIII fraction field in its own HDF5 format.
The file should only have one dataset.  Default: (undefined)

	PhotonTestTemperatureFilename (external)

	Filename of an external temperature field in its own HDF5 format.
The file should only have one dataset.  Default: (undefined)






Turbulence Simulation with Stochastic Forcing (59)


Typical quasi-isothermal “turbulence-in-a-box” problem with non-static driving field.
For details on stochastic forcing, see Schmidt et al. 2009 A&A 494, 127-145
http://dx.doi.org/10.1051/0004-6361:200809967

3D simulations with MUSCL hydro and MHD solver are tested.
PPM, ZEUS and MHDCT unsupported at this time.

Remember that in addition to the problem specific parameters below
UseDrivingField = 1 has to be turned on!





	DrivenFlowProfile (external)

	Shape of forcing power spectrum (1: delta peak, 2: band, 3: parabolic window).

	DrivenFlowAlpha (external)

	Ratio of domain length to integral length for each dimension (L = X/alpha).

	DrivenFlowBandWidth (external)

	Determines band width of the forcing spectrum relative to alpha (maximal value = 1).

	DrivenFlowMach (external)

	Characteristic velocity scale for each dimension (charcteristic force per unit mass F = V*V/L).

	DrivenFlowAutoCorrl (external)

	Determines autocorrelation time of the stochastic force in units of the integral time scale T = L/V.

	DrivenFlowWeight (external)

	Determines weight of solenoidal relative to dilatational modes (1 = purely solenoidal, 0 = purely dilatational).

	DrivenFlowSeed (external)

	Seed of random number generator.

	DrivenFlowDensity (external)

	Initial uniform density.

	DrivenFlowPressure (external)

	Initial uniform pressure.

	DrivenFlowMagField (external)

	Initial uniform magnetic field (x-direction)






Turbulence Simulation (60)


Quasi-isothermal forced turbulence.


TurbulenceSimulationsDensityName (external)

TurbulenceSimulationTotalEnergyName (external)

TurbulenceSimulationGasPressureName (external)

TurbulenceSimulationGasEnergyName (external)

TurbulenceSimulationVelocityName (external)

TurbulenceSimulationRandomForcingName (external)

TurbulenceSimulationMagneticName (external)

TurbulenceSimulationInitialTemperature (external)

TurbulenceSimulationInitialDensity (external)

TurbulenceSimulationSoundSpeed (external)

TurbulenceSimulationInitialPressure (external)

TurbulenceSimulationInitialDensityPerturbationAmplitude (external)


	TurbulenceSimulationNumberOfInitialGrids (external)

	Default: 1

	TurbulenceSimulationSubgridsAreStatic (external)

	Boolean flag. Default: 1

	TurbulenceSimulationGridLeftEdge[] (external)

	TBD

	TurbulenceSimulationGridRightEdge[] (external)

	TBD

	TurbulenceSimulationGridDimension[] (external)

	TBD

	TurbulenceSimulationGridLevel[] (external)

	TBD

	TurbulenceSimulationInitialMagneticField[i] (external)

	Initial magnetic field strength in the ith direction. Default: 5.0 (all)

	RandomForcing (external)

	This parameter is used to add random forcing field to create turbulence; see Mac Low 1999, ApJ 524, 169. Default: 0

	RandomForcingEdot (external)

	This parameter is used to define the value of such field; see TurbulenceSimulationInitialize.C and ComputeRandomForcingNormalization.C. Default: -1.0

	RandomForcingMachNumber (external)

	This parameter is used to define the value of such field; see Grid_TurbulenceSimulationInitialize.C and Grid_ComputeRandomForcingFields.C. Default: 0.0

	CycleSkipGlobalDataDump (external)

	Cycles to skip before global data (defined in ComputeRandomForcingNormalization.C) is dumped.






Protostellar Collapse (61)


Bate 1998, ApJL 508, L95-L98



	ProtostellarCollapseCoreRadius (external)

	Radius of the core. Default: 0.005

	ProtostellarCollapseOuterDensity (external)

	Initial density. Default: 1.0

	ProtostellarCollapseAngularVelocity (external)

	Initial angular velocity. Default: 0

	ProtostellarCollapseSubgridLeft, ProtostellarCollapseSubgridRight (external)

	Start and end position of subgrid. Default: 0 (for both)






Cooling Test (62)


This test problem sets up a 3D grid varying smoothly in log-space in H
number density (x dimension), metallicity (y-dimension), and temperature
(z-dimension). The hydro solver is turned off. By varying the
RadiativeCooling and CoolingTestResetEnergies parameters, two different
cooling tests can be run. 1) Keep temperature constant, but iterate
chemistry to allow species to converge. This will allow you to make plots
of Cooling rate vs. T.  For this, set RadiativeCooling to 0 and
CoolingTestResetEnergies to 1. 2) Allow gas to cool, allowing one to plot
Temperature vs.  time. For this, set RadiativeCooling to 1 and
CoolingTestResetEnergies to 0.



	CoolingTestMinimumHNumberDensity (external)

	The minimum density in code units at x=0. Default: 1
[cm-3].

	CoolingTestMaximumHNumberDensity (external)

	The maximum density in code units at
x=``DomainRightEdge[0]``. Default: 1e6
[cm-3].

	CoolingTestMinimumMetallicity (external)

	The minimum metallicity at y=0. Default: 1e-6 [Zsun].

	CoolingTestMaximumMetallicity (external)

	The maximum metallicity at
y=``DomainRightEdge[1]``. Default: 1
[Zsun].

	CoolingTestMinimumTemperature (external)

	The minimum temperature in Kelvin at z=0. Default: 10.0 [K].

	CoolingTestMaximumTemperature (external)

	The maximum temperature in Kelvin at
z=``DomainRightEdge[2]``. Default: 1e7 [K].

	CoolingTestResetEnergies (external)

	An integer flag (0 or 1) to determine whether the grid energies
should be continually reset after every iteration of the chemistry
solver such that the temperature remains constant as the mean
molecular weight varies slightly. Default: 1.






3D Collapse Test (101)

NumberOfSpheres (external)
RefineAtStart
UseParticles
MediumDensity
MediumPressure
UniformVelocity
SphereType[]
SphereRadius[]
SphereCoreRadius[]
SphereDensity[]
SpherePressure[]
SphereSoundVelocity[]
SpherePosition[]
SphereVelocity[]
SphereAngVel[]
SphereTurbulence[]
SphereCutOff[]
SphereAng1[]
SphereAng2[]
SphereNumShells[]




1D Spherical Collapse Test (102)


	RefineAtStart (external)

	Boolean flag. Default: TRUE

	UseParticles (external)

	Boolean flag. Default: False

	MediumDensity (external)

	Initial density of the medium. Default: 1.0

	MediumPressure (external)

	Initial pressure of the medium. Default: 1.0

	SphereType (external)

	Default: 0

	SphereRadius (external)

	Radius of the sphere. Default: 1.0

	SphereCoreRadius (external)

	Radius of the core. Default: 0

	SphereDensity (external)

	Initial density of the sphere. Default: 1.0

	SpherePressure (external)

	Initial pressure of the sphere. Default: 1.0

	SphereSoundVelocity (external)

	Velocity of sound. Default: 1.0

	SphereAngVel (external)

	Angular velocity of the sphere. Default: 0.0






Hydro and MHD Turbulence Simulation (106)


	RefineAtStart (external)

	Boolean flag. Default: TRUE

	PutSink (external)

	Boolean flag. Default: FALSE

	Density (external)

	Boolean flag. Default: TRUE

	SoundVelocity (external)

	Velocity of sound. Default: 1.0

	MachNumber (external)

	Default: 1.0

	AngularVelocity (external)

	Default: 0

	CloudRadius (external)

	Initial radius of the cloud. Default: 0.05

	SetTurbulence (external)

	Boolean flag. Default: TRUE

	InitialBfield (external)

	Initial magnetic field strength. Default: 0

	RandomSeed (external)

	Default: 52761

	CloudType (external)

	Default: 1






Put Sink from Restart (107)


	PutSinkRestartName (external)

	Filename to restart from.






Cluster Cooling Flow (108)


	ClusterSMBHFeedback (external)

	Boolean flag. Default: FALSE

	ClusterSMBHJetMdot (external)

	Mdot of one Jet. Units: Solar mass per year. Default: 3.0

	ClusterSMBHJetVelocity (external)

	Units:km/s. Default: 10000.0

	ClusterSMBHJetRadius (external)

	The radius of the jet launching region. Units: cell width. Default: 6.0

	ClusterSMBHJetLaunchOffset (external)

	The distance of the jet launching plane to the center of the cluster. Units: cell width. Default: 10.0

	ClusterSMBHStartTime (external)

	The time to start feedback in code unit. Default: 1.0

	ClusterSMBHTramp (external)

	The ramp time in Myr. Default: 0.1

	ClusterSMBHJetOpenAngleRadius (external)

	Default: 0.0

	ClusterSMBHFastJetRadius (external)

	Default: 0.1

	ClusterSMBHFastJetVelocity (external)

	Unit: km/s. Default: 10000.0

	ClusterSMBHJetEdot (external)

	Unit: 10^44 ergs/s. Default: 1.0

	ClusterSMBHKineticFraction (external)

	The fraction of kinetic energy feedback; the rest is thermal feedback. Default: 1.0

	ClusterSMBHJetAngleTheta (external)

	The angle of the jet direction with respect to z-axis. Default: 0.0 (along the axis)

	ClusterSMBHJetAnglePhi (external)

	Default: 0.0

	ClusterSMBHJetPrecessionPeriod (external)

	Unit: Myr. Default: 0.0 (not precessing)

	ClusterSMBHCalculateGasMass (external)

	Type: integer. 1–Calculate the amount of cold gas around the SMBH and remove it at the rate of 2*Mdot; 2–Calculate Mdot based on the amount of cold gas around the SMBH; 0–off (do not remove cold gas). Default: 1.

	ClusterSMBHFeedbackSwitch (external)

	Boolean flag. When ClusterSMBHCalculateGasMass=1, ClusterSMBHFeedbackSwitch is turned on when there is enough cold gas (ClusterSMBHEnoughColdGas) around the SMBH. Default: FALSE

	ClusterSMBHEnoughColdGas (external)

	Unit: Solar mass. Default: 1.0e7

	ClusterSMBHAccretionTime (external)

	When ClusterSMBHCalculateGasMass = 2, Mdot = Mcold/ClusterSMBHAccretionTime. Default: 5.0 (Myr)

	ClusterSMBHJetDim (external)

	0–x; 1–y; 2–z. Default: 2

	ClusterSMBHAccretionEpsilon (external)

	Jet Edot = ClusterSMBHAccretionEpsilon * Mdot * c^2. Default: 0.001






1D MHD Test (200)


	RefineAtStart (external)

	Boolean flag. Default: TRUE

	LeftVelocityX, RightVelocityX (external)

	Initial velocity x-direction. Default: 0 (for both)

	LeftVelocityY, RightVelocityY (external)

	Initial velocity y-direction. Default: 0 (for both)

	LeftVelocityZ, RightVelocityZ (external)

	Initial velocity z-direction. Default: 0 (for both)

	LeftPressure, RightPressure (external)

	Initial pressure. Default: 1.0 (for both)

	LeftDensity, RightDensity (external)

	Initial density. Default: 1.0 (for both)

	LeftBx, RightBx (external)

	Initial magnetic field x-direction. Default: 0 (for both)

	LeftBy, RightBy (external)

	Initial magnetic field y-direction. Default: 0 (for both)

	LeftBz, RightBz  (external)

	Initial magnetic field z-direction. Default: 0 (for both)






2D MHD Test (201)

This problem type sets up many common 2D hydro and MHD problem types.
Many of them can be run also without MHD despite the name. Which problem is done is controled by
MHD2DProblemType which can vary from 0 to 16 so far.


	RefineAtStart (external)

	Boolean flag. Default: TRUE

	LowerVelocityX, UpperVelocityX (external)

	Initial velocity x-direction. Default: 0 (for both)

	LowerVelocityY, UpperVelocityY (external)

	Initial velocity y-direction. Default: 0 (for both)

	LowerPressure, UpperPressure (external)

	Initial pressure. Default: 1.0 (for both)

	LowerDensity, UpperDensity (external)

	Initial density. Default: 1.0 (for both)

	LowerBx, UpperBx (external)

	Initial magnetic field x-direction. Default: 0 (for both)

	LowerBy, UpperBy (external)

	Initial magnetic field y-direction. Default: 0 (for both)

	MHD2DProblemType (external)

	Default: 0
0: Raleigh-Taylor, 1: MHD rotor (Toth 2000, JCompPhys 161, 605.), 2: MHD blast wave (Gardiner and Stone 2005, JCompPhys. 205, 509), 3: MHD Kelvin-Helmholtz (Gardiner & Stone 2005), 4: Another MHD Kelvin Helmholtz, 5: Shock-vortex interaction (Rault, Chiavassa & Donat, 2003, J. Scientific Computing, 19, 1.), 6: Sedov-Taylor Blast Wave (Fryxell et al. 2000, ApJS, 131, 273), 7: Cylindrical Sedov-Taylor Blast Wave (Fryxell et al. 2000), 8: Like MHD2DProblemType = 5 but with a small perturbation upstream of the shock to test odd even coupling of Reimann Solvers, 9: Smoothed Kelvin Helnholtz problem (Robertson, Kravtsov, Gnedin, Abel & Rudd 2010, MNRAS, 401), 10: A modified Raleigh-Taylor problem, 11: Uniform density with sinusoidal shear velocity (Compare to rpSPH tests in Abel 2012), 12: Experimental test, 13: Exploratory blob test, 14: Wengen 2 test to study colliding flows with very soft equations of state, 15: Another experiment with B-fields, 16: A validated non-linear Kelvin Helmholtz test (Lecoanet, McCourt, Quataert, Burns, Vasil, Oishi, Brown, Stone, & O’Leary 2015 preprint)

	RampWidth (external)

	Default: 0.05

	UserColour (external)

	Boolean flag. Default: FALSE






3D MHD Collapse Test (202)


	RefineAtStart (external)

	Boolean flag. Default: FALSE

	LowerVelocityX, UpperVelocityX (external)

	Initial velocity x-direction. Default: 0 (for both)

	LowerVelocityY, UpperVelocityY (external)

	Initial velocity y-direction. Default: 0 (for both)

	LowerPressure, UpperPressure (external)

	Initial pressure. Default: 1.0 (for both)

	LowerDensity, UpperDensity (external)

	Initial density. Default: 1.0 (for both)

	LowerBx, UpperBx (external)

	Initial magnetic field x-direction. Default: 0 (for both)

	LowerBy, UpperBy (external)

	Initial magnetic field y-direction. Default: 0 (for both)

	MHD3DProblemType (external)

	Default: 0






MHD Turbulent Collapse Test (203)


	RefineAtStart (external)

	Boolean flag. Default: TRUE

	Density (external)

	Initial density. Default: 1.0

	SoundVelocity (external)

	Speed of sound. Default: 1.0

	MachNumber (external)

	Default: 1.0

	InitialBfield (external)

	Initial magnetic field strength. Default: 0

	RandomSeed (external)

	Default: 0






Galaxy Disk (207)


	NumberOfHalos (external)

	Number of Halos simulated. Default: 1

	RefineAtStart (external)

	Boolean flag. Default: TRUE

	UseParticles (external)

	Boolean flag. Default: FALSE

	UseGas (external)

	Boolean flag. Default: TRUE

	MediumTemperature (external)

	Temperature of the medium. Default: 1000

	MediumDensity (external)

	Density of the medium. Default: 1.0

	HaloMagneticField (external)

	Magnetic Field Strength. Default: 0

	UniformVelocity[i] (external)

	Velocity in all 3 dimensions. Default: 0 (all)

	GalaxyType[i] (external)

	Sppecifying galaxy type for the ith sphere. Default: 0 (all)

	HaloRadius[i] (external)

	Radius of the halo for the ith sphere. Default: 1 (all)

	HaloCoreRadius[i] (external)

	Core radius for the ith sphere. Default: 0.1 (all)

	HaloDensity[i] (external)

	Density of the halo for the ith sphere. Default: 1 (all)

	HaloTemperature[i] (external)

	Temperature of the halo for the ith sphere. Default: 1 (all)

	HaloAngVel[i] (external)

	TBD

	HaloSpin[i] (external)

	TBD

	HaloPosition[i][j] (external)

	Position of the Halo.

	HaloVelocity[i][j] (external)

	Velocity of the Halo.

	DiskRadius[i] (external)

	TBD

	DiskHeight[i] (external)

	TBD

	DiskDensity[i] (external)

	TBD

	DiskTemperature[i] (external)

	TBD

	DiskMassFraction[i] (external)

	Default: 0 (all)

	DiskFlaringParameter[i] (external)

	Default: 10 (all)






AGN Disk (207)


	DiskType (external)

	Default: 1

	RefineAtStart (external)

	Boolean flag. Default: 0

	BlackHoleMass (external)

	Initial mass of black hole. Default: 0

	UseGas (external)

	Boolean flag. Default: 1

	DiskDensity (external)

	Initial density of the disk. Default: 1

	DiskTemperature (external)

	Initial temperature of the disk. Default: 1

	DiskRadius (external)

	Initial radius of the disk. Default: 1

	DiskHeight (external)

	Initial height of the disk. Default: 1






CR Shock Tube (250: unigrid and AMR)


Very similar to normal shock tube (see problem 1) but includes CR
component.  See Salem, Bryan & Hummels (2014) for discussion.

In addition the regular shock tube parameters, we add:





	HydroShockTubesLeftCREnDensity, HydroShockTubesRightCREnDensity (external)

	The initial CR energy density on the left and right sides.
Default: 1.0 for each value.



HydroShockTubesCenterDensity, HydroShockTubesCenterPressure,
HydroShockTubesCenterVelocityX,
HydroShockTubesCenterVelocityY,
HydroShockTubesCenterVelocityZ,
HydroShockTubesCenterCREnDensity (external)


In addition to setting a shock tube with two constant regions,
this version also allows for three constant region,
with a Center region in addition to the Left and Right regions.
Finally, there are two special cases – if
HydroShockTubesCenterCREnDensity is set to 123.4, then the central
region will be set to a ramp between the left and right regions,
and if HydroShockTubesCenterCREnDensity is set to 567.8, then a
gaussian CR energy density is initialized (these problems were set
up to test the CR diffusion).





Poisson Solver Test (300)


	PoissonSolverTestType (external)

	Default: 0

	PoissonSolverTestGeometryControl (external)

	Default: 1

	PoissonSolverTestRefineAtStart (external)

	Boolean flag. Default: 0






Radiation-Hydrodynamics Test 1 - Constant Fields (400)


Basic FLD radiation problem initializer, allowing setup of uniform
fields throughout the computational domain, which are useful for
testing radiation/material couplings. Test problem used for
problem 4.2 in (Reynolds et al., “Self-consistent solution of
cosmological radiation-hydrodynamics and chemical ionization,”
JCP, 2009).



	RadHydroVelocity (external)

	Initialize velocity of ambient gas in the x,y,z directions. Default: 0 (all).
Example RadHydroVelocity = 0.1 0.1 0.1

	RadHydroChemistry (external)

	Number of chemical species.  1 implies hydrogen only, 3 implies
hydrogen and helium. Default: 1.

	RadHydroModel (external)

	Type of radiation/matter coupling: 1 implies a standard
chemistry-dependent model, 4 implies an isothermal
chemistry-dependent model, 10 implies a chemistry-independent model
in thermodynamic equilibrium. Default: 1

	RadHydroDensity (external)

	Ambient density. Default: 10

	RadHydroTemperature (external)

	Ambient temperature. Default: 1

	RadHydroIEnergy (external)

	Ambient internal energy (replaces temperature, if specified).
Default: -1

	RadHydroRadiationEnergy (external)

	Ambient radiation energy. Default: 10

	RadHydroInitialFractionHII (external)

	Initial fraction of ionized hydrogen (in relation to all hydrogen).
Default: 0

	RadHydroHFraction (external)

	Initial fraction of hydrogen (in relation to the total density).
Default: 1

	RadHydroInitialFractionHeII (external)

	Initial fraction of helium II (in relation to the total helium).
Default: 0

	RadHydroInitialFractionHeIII (external)

	Initial fraction of helium III (in relation to the total helium).
Default: 0






Radiation-Hydrodynamics Test 2 - Streams (401)


Streaming radiation tests.  The problem utilizes a uniform density
and a constant opacity, setting one face of the domain to have a
radiation energy density of 1.  The radiation front propagates
through the domain at the speed of light.  The sharpness of the
radiation front is determined by the spatial resolution.  Test
problem used for problem 4.1 in (Reynolds et al.,
“Self-consistent solution of cosmological radiation-hydrodynamics
and chemical ionization,” JCP, 2009).



	RadHydroDensity (external)

	Ambient density. Default: 1.0

	RadHydroRadEnergy (external)

	Ambient radiation energy. Default 1.0e-10

	RadStreamDim (external)

	Dimension to test {0,1,2}. Default: 0

	RadStreamDir (external)

	Direction for streaming radiation. 0 for left to right. 1 for right to left.
Default: 0






Radiation-Hydrodynamics Test 3 - Pulse (402)


	RadHydroDensity (external)

	Ambient density. Default: 1.0

	RadHydroRadEnergy (external)

	Ambient radiation energy. Default 1.0e-10

	RadPulseDim (external)

	Dimension to test {0,1,2}. Default: 0






Radiation-Hydrodynamics Test 4 - Grey Marshak Test (403)


Test problem used for problem 4.3 in (Reynolds et al.,
“Self-consistent solution of cosmological radiation-hydrodynamics
and chemical ionization,” JCP, 2009).



	RadHydroDensity (external)

	Ambient density. Default: 1.0

	RadHydroRadEnergy (external)

	Ambient radiation energy. Default 1.0

	RadHydroGasEnergy (external)

	Ambient gas energy. Default: 1.0

	GreyMarshDir (external)

	Propagation coordinate for Marshak problem. {0,1,2}. Default: 0






Radiation-Hydrodynamics Test 5 - Radiating Shock (404/405)


Test problem used for problem 4.4 in (Reynolds et al.,
“Self-consistent solution of cosmological radiation-hydrodynamics
and chemical ionization,” JCP, 2009).



	DensityConstant (external)

	Ambient density. Default: 1.0

	GasTempConstant (external)

	Ambient gas temperature. Default: 1.0

	RadTempConstant (external)

	Ambient radiation temperature. Default: 1.0

	VelocityConstant (external)

	Imposed fluid velocity. Default: 1.0

	ShockDir (external)

	Propagation coordinate for shock. {0,1,2}. Default: 0

	CGSType (external)

	1 = Astrophysical Setup Parameters;
2 = “lab” setup parameters, after Lowrie;
Default: 1






Radiation-Hydrodynamics Tests 10 and 11 - I-Front Tests (410/411)


Uniform density ionization front test problems.  These tests are
used to replicate the isothermal and temperature-dependent I-front
tests 1 and 2 from (Iliev et al., “Cosmological Radiative Transfer
Codes Comparison Project I: The Static Density Field Tests,”
MNRAS, 2006).  This test problem was used for problem 4.5 in
(Reynolds et al., “Self-consistent solution of cosmological
radiation-hydrodynamics and chemical ionization,” JCP, 2009).



	RadHydroVelocity (external)

	Initial velocity of ambient gas in the x,y,z directions. Default: 0 (all).
Example RadHydroVelocity = 0.1 0.1 0.1

	RadHydroChemistry (external)

	Number of chemical species.  1 implies hydrogen only, 3 implies
hydrogen and helium. Default: 1.

	RadHydroModel (external)

	Type of radiation/matter coupling: 1 implies a standard
chemistry-dependent model, 4 implies an isothermal
chemistry-dependent model. Default: 1

	RadHydroDensity (external)

	Ambient density. Default: 10

	RadHydroTemperature (external)

	Ambient temperature. Default: 1

	RadHydroIEnergy (external)

	Ambient internal energy (replaces temperature, if specified).
Default: -1

	RadHydroRadiationEnergy (external)

	Ambient radiation energy. Default: 10

	RadHydroInitialFractionHII (external)

	Initial fraction of ionized hydrogen (in relation to all hydrogen).
Default: 0

	RadHydroHFraction (external)

	Initial fraction of hydrogen (in relation to the total density).
Default: 1

	RadHydroInitialFractionHeII (external)

	Initial fraction of helium II (in relation to the total helium).
Default: 0

	RadHydroInitialFractionHeIII (external)

	Initial fraction of helium III (in relation to the total helium).
Default: 0

	NGammaDot (external)

	Strength of ionization source, in number of photons per second.
Default: 0

	EtaRadius (external)

	Radius of ionization source, in cells (0 implies a single-cell source).
Default: 0

	EtaCenter (external)

	Location of ionization source, in scaled length units, in the x,y,z
directions. Default: 0 (all).
Example EtaCenter = 0.5 0.5 0.5






Radiation-Hydrodynamics Test 12 - HI ionization of a clump (412)


Ionization of a hydrogen clump, used to investigate I-front
trapping in a dense clump, and the formation of a shadow.  This
test replicates the test 3.4 from (Iliev et al., “Cosmological
Radiative Transfer Codes Comparison Project I: The Static Density
Field Tests,” MNRAS, 2006).



	RadHydroVelocity (external)

	Initial velocity of ambient gas in the x,y,z directions. Default: 0 (all).
Example RadHydroVelocity = 0.1 0.1 0.1

	RadHydroChemistry (external)

	Number of chemical species.  1 implies hydrogen only, 3 implies
hydrogen and helium. Default: 1.

	RadHydroModel (external)

	Type of radiation/matter coupling: 1 implies a standard
chemistry-dependent model, 4 implies an isothermal
chemistry-dependent model. Default: 1

	RadHydroNumDensityIn (external)

	Number density inside the clump. Default: 0.04

	RadHydroNumDensityOut (external)

	Number density outside the clump. Default: 0.0002

	RadHydroTemperatureIn (external)

	Temperature inside the clump. Default: 40

	RadHydroTemperatureOut (external)

	Temperature outside the clump. Default: 8000

	RadHydroRadiationEnergy (external)

	Ambient radiation energy. Default: 10

	RadHydroInitialFractionHII (external)

	Initial fraction of ionized hydrogen (in relation to all hydrogen).
Default: 0

	ClumpCenter (external)

	Location of clump center, in cm, in the x,y,z directions.
Default: 1.54285e22 1.018281e22 1.018281e22

	ClumpRadius (external)

	Radius of clump, in cm.
Default: 2.46856e21

	NGammaDot (external)

	Strength of ionization source along left wall, in number of photons
per second.  Default: 0






Radiation-Hydrodynamics Test 13 - HI ionization of a steep region (413)


Ionization of a steep density gradient, used to investigate HII
region expansion along a 1/r^2 density profile.  This test
replicates the test 3.2 from (Iliev et al., “Cosmological
Radiative Transfer Comparison Project II: The
Radiation-Hydrodynamic Tests,” MNRAS, 2009).



	RadHydroVelocity (external)

	Initial velocity of ambient gas in the x,y,z directions. Default: 0 (all).
Example RadHydroVelocity = 0.1 0.1 0.1

	RadHydroChemistry (external)

	Number of chemical species.  1 implies hydrogen only, 3 implies
hydrogen and helium. Default: 1.

	RadHydroModel (external)

	Type of radiation/matter coupling: 1 implies a standard
chemistry-dependent model, 4 implies an isothermal
chemistry-dependent model. Default: 1

	RadHydroNumDensity (external)

	Number density inside the core of the dense region. Default: 3.2

	RadHydroDensityRadius (external)

	Radius of the dense region, in cm. Default: 2.8234155e+20

	RadHydroTemperature (external)

	Ambient temperature. Default: 100

	RadHydroRadiationEnergy (external)

	Ambient radiation energy. Default: 1e-20

	RadHydroInitialFractionHII (external)

	Initial fraction of ionized hydrogen (in relation to all hydrogen).
Default: 0

	EtaCenter (external)

	Center of the dense region (and ionization source), in cm, in the
x,y,z directions.  Default: 0 0 0

	NGammaDot (external)

	Strength of ionization source, in number of photons per second.
Default: 0






Radiation-Hydrodynamics Tests 14/15 - Cosmological HI ionization (414/415)


HI ionization in a uniform density field.  This test problem was
used for problems 4.6 and 4.8 in (Reynolds et al.,
“Self-consistent solution of cosmological radiation-hydrodynamics
and chemical ionization,” JCP, 2009).  Test 4.6 utilized a single
ionization source (test 415), whereas 4.8 replicated the test to
the center of every processor for performing weak-scaling tests
(test 414).



	RadHydroVelocity (external)

	Initial velocity of ambient gas in the x,y,z directions. Default: 0 (all).
Example RadHydroVelocity = 0.1 0.1 0.1

	RadHydroChemistry (external)

	Number of chemical species.  1 implies hydrogen only, 3 implies
hydrogen and helium. Default: 1.

	RadHydroModel (external)

	Type of radiation/matter coupling: 1 implies a standard
chemistry-dependent model, 4 implies an isothermal
chemistry-dependent model. Default: 1

	RadHydroTemperature (external)

	Ambient temperature in K. Default: 10000

	RadHydroRadiationEnergy (external)

	Ambient radiation energy in erg/cm^3. Default: 1.0e-32

	RadHydroInitialFractionHII (external)

	Initial fraction of ionized hydrogen (in relation to all hydrogen).
Default: 0

	RadHydroOmegaBaryonNow (external)

	Default: 0.2

	NGammaDot (external)

	Strength of ionization source, in number of photons per second.
Default: 0

	EtaRadius (external)

	Radius of ionization source for test 415, in cells (0 implies a
single-cell source).
Default: 0

	EtaCenter (external)

	Location of ionization source for test 415, in scaled length units,
in the x,y,z directions. Default: 0 (all).
Example EtaCenter = 0.5 0.5 0.5
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Physics Modules in Enzo

Here we will present an overview of the numerical techniques in Enzo’s
physics modules.



	Active Particles: Stars, BH, and Sinks
	Method 0: Cen & Ostriker

	Method 1: Cen & Ostriker with Stochastic Star Formation

	Method 2: Global Schmidt Law

	Method 3: Population III Stars

	Method 4: Sink particles

	Method 5: Radiative Stellar Clusters

	Method 6: Reserved for future use

	Method 7: Cen & Ostriker with no delay in formation

	Method 8: Springel & Hernquist

	Method 9: Massive Black Holes

	Method 10: Population III stellar tracers

	Method 11: Molecular Hydrogen Regulated Star Formation

	Method 14: Kinetic Feedback

	Restarting a Simulation With Star Formation or Feedback

	Distributed Stellar Feedback

	Notes





	Hydro and MHD Methods
	Method 0: Piecewise Parabolic Method (PPM)

	Method 2: ZEUS

	Method 3: MUSCL

	Method 4: MHD with Hyperbolic Cleaning (Dedner)

	Method 6: MHD with Constrained Transport (CT)

	Method 5: No Hydro

	Notes





	Cooling and Heating of Gas
	MultiSpecies = 0: Sarazin & White

	MultiSpecies = 1, 2, or 3: Primordial Chemistry and Cooling

	Metal Cooling

	UV Meta-galactic Backgrounds





	Radiative Transfer
	Adaptive Ray Tracing

	Flux Limited Diffusion





	Shock Finding

	Cosmic Ray Two-Fluid Model
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Active Particles: Stars, BH, and Sinks

There are many different subgrid models of star formation and feedback
in the astrophysical literature, and we have included several of them
in Enzo.  There are also methods that include routines for black hole,
sink, and Pop III stellar tracer formation.  Here we give the details
of each implementation and the parameters that control them.
For relevant parameters please also see Star Formation and Feedback Parameters.


Method 0: Cen & Ostriker

Select this method by setting StarParticleCreation = 1.

Source: star_maker2.F

This routine uses the algorithm from Cen & Ostriker (1992, ApJL 399,
113) that creates star particles when the following six criteria are
met


	The gas density is greater than the threshold set in the parameter
StarMakerOverDensityThreshold.  This parameter is in code units
(i.e. overdensity with respect to the mean matter density)

	The divergence is negative

	The dynamical time is less than the cooling time or the temperature
is less than 11,000 K.  The minimum dynamical time considered is
given by the parameter StarMakerMinimumDynamicalTime in units
of years.

	The cell is Jeans unstable.

	The star particle mass is greater than StarMakerMinimumMass,
which is in units of solar masses.

	The cell does not have finer refinement underneath it.



These particles add thermal and momentum feedback to the grid cell
that contains it until 12 dynamical times after its creation.  In each
timestep,


[image: M_{\rm form} &= M_0 [ (1+x_1) \exp(-x_1) - (1+x_2) \exp(-x_2) ]\\ x_1 &= (t - t_0) / t_{\rm dyn}\\ x_2 &= (t + dt - t_0) / t_{\rm dyn}]


of stars are formed, where M0 and t0 are the initial
star particle mass and creation time, respectively.


	Mej = Mform * StarMassEjectionFraction of gas
are returned to the grid and removed from the particle.

	Mej * vparticle of momentum are added to the cell.

	Mform * c2 * StarEnergyToThermalFeedback
of energy is deposited into the cell.

	Mform * ((1 - Zstar) * StarMetalYield +
StarMassEjectionFraction * Zstar) of metals are
added to the cell, where
Zstar is the star particle metallicity.  This formulation
accounts for gas recycling back into the stars.






Method 1: Cen & Ostriker with Stochastic Star Formation

Select this method by setting StarParticleCreation = 2.

Source: star_maker3.F

This method is suitable for unigrid calculations.  It behaves in the
same manner as Method 1 except


	No Jeans unstable check

	Stochastic star formation: Keeps a global sum of “unfulfilled”
star formation that were not previously formed because the star
particle masses were under StarMakerMinimumMass.  When this
running sum exceeds the minimum mass, it forms a star particle.

	Initial star particle velocities are zero instead of the gas
velocity as in Method 1.

	Support for multiple metal fields.






Method 2: Global Schmidt Law

Select this method by setting StarParticleCreation = 4.

Source: star_maker4.F

This method is based on the Kratsov (2003, ApJL 590, 1) paper that
forms star particles that result in a global Schmidt law.  This
generally occurs when the gas consumption time depends on the local
dynamical time.

A star particle is created if a cell has an overdensity greater than
StarMakerOverDensityThreshold.  The fraction of gas that is
deposited into the star particle is
dt/StarMakerMinimumDynamicalTime up to a maximum of 90% of the gas
mass.  Here the dynamical time is in units of years.

Stellar feedback is accomplished in the same way as Method 1 (Cen &
Ostriker) but Mform = StarMakerEjectionFraction * (star
particle mass).




Method 3: Population III Stars

Select this method by setting StarParticleCreation = 8.

Source: pop3_maker.F

This method is based on the Abel et al. (2007, ApJL 659, 87) paper
that forms star particles that represents single metal-free stars.
The criteria for star formation are the same as Method 1 (Cen &
Ostriker) with the expection of the Jeans unstable check.  It makes
two additional checks,


	The H2 fraction exceeds the parameter
PopIIIH2CriticalFraction.  This is necessary because the
cooling and collapse is dependent on molecular hydrogen and local
radiative feedback in the Lyman-Werner bands may prevent this
collapse.

	If the simulation tracks metal species, the gas metallicity in an
absolute fraction must be below PopIIIMetalCriticalFraction.



Stellar radiative feedback is handled by the Radiative Transfer
module.  By default, only hydrogen ionizing radiation is considered.
To include helium ionizing radiation, set PopIIIHeliumIonization
to 1.  Supernova feedback through thermal energy injection is done by
the Star Particle Class.  The explosion energy is computed from
the stellar mass and is deposited in a sphere with radius
PopIIISupernovaRadius in units of pc.  To track metal
enrichment, turn on the parameter PopIIISupernovaUseColour.




Method 4: Sink particles

Select this method by setting StarParticleCreation = 16.

Source: sink_maker.C

A couple of variations on this method exist but are not being actively maintained.
They require a completely different set of parameters to turn on such as BigStarFormation;
see Grid_StarParticleHandler.C and Star Formation and Feedback Parameters.

Source: star_maker8.C, star_maker9.C




Method 5: Radiative Stellar Clusters

Select this method by setting StarParticleCreation = 32.

Source: cluster_maker.F

This method is based on method 1 (Cen & Ostriker) with the Jeans
unstable requirement relaxed.  It is described in Wise & Cen (2009,
ApJ 693, 984).  The star particles created with this method use the
adaptive ray tracing to model stellar radiative feedback.  It
considers both cases of Jeans-resolved and Jeans unresolved
simulations.  The additional criteria are


	The cell must have a minimum temperature of 10,000 K if the
6-species chemistry model (MultiSpecies == 1) is used and 1,000
K if the 9-species chemistry model is used.

	The metallicity must be above a critical metallicity
(PopIIIMetalCriticalFraction) in absolute fraction.



When the simulation is Jeans resolved, the stellar mass is
instantaneously created and returns its luminosity for 20 Myr.  In the
case when it’s Jeans unresolved, the stellar mass follows the Cen &
Ostriker prescription.




Method 6: Reserved for future use

Reserved for future use.

Source:




Method 7: Cen & Ostriker with no delay in formation

Select this method by setting StarParticleCreation = 128.

Source: star_maker7.F

This method relaxes the following criteria from the original Cen &
Ostriker prescription.  See Kim et al. (2011, ApJ 738, 54) for more
details.  It can be used to represent single molecular clouds.


	No Jeans unstable check

	No Stochastic star formation prescription that is implemented in
Method 1.

	If there is a massive black hole particle in the same cell, the star
particle will not be created.



The StarMakerOverDensity is in units of particles/cm3 and
not in overdensity like the other methods.




Method 8: Springel & Hernquist

Select this method by setting StarParticleCreation = 256.

Source: star_maker5.F

This method is based on the Springel & Hernquist method
of star formation described in
MNRAS, 339, 289, 2003. [http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003MNRAS.339..289S&link_type=ABSTRACT]
A star may be formed from
a cell of gas if all of the following conditions are met:


	The cell is the most-refined cell at that point in space.

	The density of the cell is above a threshold.

	The cell of gas is in the region of refinement. For unigrid, or
AMR-everywhere simulations, this corresponds to the whole volume. But for
zoom-in simulations, this prevents star particles from forming in areas
that are not being simulated at high resolution.



If a cell has met these conditions, then these quantities are calculated for
the cell:


	
	Cell star formation timescale (Eqn 21 from Springel & Hernquist).

	[image: t_0^{\ast}] and [image: \rho_{\mathrm{th}}] are inputs to the model,
and are the star formation time scale and density scaling value,
respectively. Note that [image: \rho_{\mathrm{th}}] is not the same as the
critical density for star formation listed above. [image: \rho] is the
gas density of the cell.


[image: t_{\ast}(\rho)=t_0^{\ast}\left(\frac{\rho}{\rho_{\mathrm{th}}}\right)^{-1/2}]








	
	Mass fraction in cold clouds, [image: x] (see Eqns. 16 and 18).

	[image: y] is a dimensionless quantity
calculated as part of the formulation;
[image: u_{\textrm{SN}}\equiv(1-\beta)\beta^{-1}\epsilon_{\textrm{SN}}] is
the energy released from supernovae back into the gas (note that whether
or not the energy is actually returned to the gas depends on if
StarFormationFeedback is turned on or not); [image: \beta] is the
fraction of stars that go supernova soon after formation;
[image: \epsilon_{\textrm{SN}}] is the energy released from a nominal
supernova and is set to 4e48 ergs; and finally [image: \Lambda(\rho, T, z)]
is the cooling rate of the cell of gas.


[image: y\equiv\frac{t_{\ast}\Lambda(\rho,T,z)}{\rho[\beta u_{\mathrm{SN}}-(1-\beta)u_{\mathrm{SN}}]}  x=1+\frac{1}{2y}-\sqrt{\frac{1}{y}+\frac{1}{4y^2}}]










Finally, a star particle of mass [image: m_{\ast}] is created with probability
[image: p_{\ast}] (see
Eqn. 39). For a cell, the quantity [image: p_{\ast}] is calculated (below) and
compared to a random number [image: p] drawn evenly from [0, 1).
If [image: p_{\ast} > p], a star is created. [image: m_{\ast}] is a parameter of
the model and is the minimum and only star mass allowed;
[image: m] is the mass of gas in the cell;
[image: \Delta t] is the size of the simulation time step that
is operative for the cell (which changes over AMR levels, of course).


[image: p_{\ast}=\frac{m}{m_{\ast}}\left\{1-\exp\left[-\frac{(1-\beta)x\Delta t}{t_{\ast}}\right]\right\}]


If this star formula is used with AMR, some caution is required. Primarily,
the AMR refinement can not be too aggressive. Values of OverDensityThreshold
below 8 are not recommended. This is because if refinement is more aggressive
than 8 (i.e. smaller), the most-refined cells, where star formation should
happen, can have less mass than a root-grid cell, and for a deep AMR hierarchy
the most refined cells can have mass below [image: m_{\ast}]. Put another way,
with aggressive refinement the densest cells where stars should form may be
prevented from forming stars simply because their total mass is too low.
Keeping OverDensityThreshold at 8 or above ensures that refined cells have
at least a mass similar to a root-grid cell.

Another reason for concern is in AMR, [image: \Delta t] changes with AMR level.
Adding a level of AMR generally halves the value of [image: \Delta t], which
affects the probability of making a star. In a similar way, a small value of
CourantSafetyFactor can also negatively affect the function of this
star formula.




Method 9: Massive Black Holes

Select this method by setting StarParticleCreation = 512.

This simply insert a MBH particle based on the information given by an external file (MBHInsertLocationFilename).
See Massive Black Hole Particle Formation in Star Formation and Feedback Parameters.

Source: mbh_maker.C




Method 10: Population III stellar tracers

Select this method by setting StarParticleCreation = 1024.

Source: pop3_color_maker.F




Method 11: Molecular Hydrogen Regulated Star Formation

Select this method by setting StarParticleCreation = 2048.

Source: star_maker_h2reg.F

This SF recipe incorporates ideas from Krumholz & Tan (2007) [http://adsabs.harvard.edu/abs/2007ApJ...654..304K] (KT07),
Krumholz, McKee, & Tumlinson (2009) [http://adsabs.harvard.edu/abs/2009ApJ...693..216K] (KMT09) and
McKee & Krumholz (2010) [http://adsabs.harvard.edu/abs/2010ApJ...709..308M] (MK10). The star
formation rate density is given by:



[image: \frac{d\rho_\star}{dt} = \epsilon_\star \, f_{\rm H_2} \, \frac{\rho}{t_{\rm ff}}.]





The SF time scale is the gas free fall time ([image: t_{\rm ff} \sim \rho^{-1/2}]), and thus the SFR density is effectively proportional to
[image: \rho^{3/2}]. [image: \epsilon_\star] (H2StarMakerEfficiency)
is the specific star formation efficiency per free-fall time, which
typically is around 1% (KT07). The SFR is proportional
to the molecular hydrogen density, not the total gas density. The H2 fraction ([image: f_{\rm H_2}]) is estimated using the
prescription given by KMT09 and MK10, which is based on 1D
radiative transfer calculations and depends on the neutral hydrogen
number density, the metallicity, and the H2 dissociating
flux. The prescription can be written down in four lines:



[image: \chi &= 71 \left( \frac{\sigma_{d,-21}}{R_{-16.5}} \right) \frac{G_0'}{n_H}; \qquad {\rm [MK10 \; Eq.(9)]} \\ \tau_c &= 0.067 \, Z' \, \Sigma_H; \qquad {\rm [KMT09 \; Eq.(22)]} \\ s &= \frac{ \ln( 1 + 0.6 \, \chi + 0.01 \, \chi^2)}{0.6 \tau_c}; \qquad {\rm [MK10 \; Eq.(91)]} \\ f_{\rm H_2} &\simeq 1 - \frac{0.75 \, s}{1 + 0.25 s} \qquad {\rm [MK10 \; Eq.(93)]}]






	[image: \left( \frac{\sigma_{d,-21}}{R_{-16.5}} \right)] is the ratio of the dust cross section per H nucleus to 1000 Angstroem radiation normalized to 10-21 cm2 ([image: \sigma_{d,-21}]) to the rate coefficient for H2 formation on dust grains normalized to the Milky Way value of 10-16.5 cm3 s-1 ([image: R_{-16.5}]). Both are linearly proportional to the dust-to-gas ratio and hence the ratio is likely independent of metallicity. Although its value is probably close to unity in nature (see discussion in KMT09), Krumholz & Gnedin (2011) argue that in simulations with spatial resolution of ~50 pc, the value of [image: R_{-16.5}] should be increased by a factor of ~30 in order to account for the subgrid clumping of the gas. The value of this ratio can be controlled with the parameter H2StarMakerSigmaOverR.



	[image: G_0'] is the H2 dissociating radiation field in units of the typical value in the Milky Way (7.5x10-4 cm3 s-1, Draine 1978). At the moment only a spatially uniform and time-independent radiation field is supported, and its strength is controlled by the parameter H2StarMakerH2DissociationFlux_MW.



	[image: Z'] is the gas phase metallicity normalized to the solar neighborhood, which is assumed to be equal to solar metallicity: Z’ = Z/0.02.



	[image: \Sigma_H] is the column density of the gas on the scale of a giant atomic-molecular cloud complexes, so ~50-100 pc. This column density is calculated on the MaximumRefinementLevel grid cells, and it implies that this star formation method can only safely be used in simulations with sub-100pc resolution. If H2StarMakerUseSobolev is set, the column density is calculated through a Sobolev-like approximation, [image: \Sigma \sim \rho \times (\rho / \nabla \rho)], otherwise it’s simply [image: \Sigma = \rho \times dx], which introduces an undesirable explicit resolution dependence.



	If H2StarMakerAssumeColdWarmPressureBalance == 1, then the additional assumption of pressure balance between the Cold Neutral Medium (CNM) and the Warm Neutral Medium (WNM) removes the dependence on the H2 dissociating flux (KMT09). In this case



[image: \chi = 2.3 \left( \frac{\sigma_{d,-21}}{R_{-16.5}} \right) \frac{1 + 3.1 \, Z'^{0.365}}{\phi_{\rm CNM}},  \qquad {\rm [KMT09 \; Eq.(7)]}]









where [image: \phi_{\rm CNM}] is the ratio of the typical CNM density
to the minimum density at which CNM can exist in pressure balance with
WNM. Currently [image: \phi_{\rm CNM}] is hard-coded to the value of 3.

It is possible to impose an H2 floor in cold gas, which might
be applicable for some low density situations in which the KMT09
equilibrium assumption may not hold. The parameter
H2StarMakerH2FloorInColdGas can be used to enforce such a floor
for all cells that have temperature less than
H2StarMakerColdGasTemperature. This has not been extensively
tested, so caveat emptor.

Optionally, a proper number density threshold
(H2StarMakerNumberDensityThreshold) and/or an H2 fraction
threshold (H2StarMakerMinimumH2FractionForStarFormation) is
applied, below which no star formation occurs.

Typically this method is used with
StarFormationOncePerRootGridTimeStep, in which case SF occurs only
at the beginning of the root grid step and only for grids on
MaximumRefinementLevel, but with a star particle mass that is
proportial to the root grid time step (as opposed to the much smaller
time step of the maximally refined grid). This results in fewer and
more massive star particles, which improves computational
efficiency. Even so, it may be desirable to enforce a lower limit to
the star particle mass in some cases. This can be done with the
parameter H2StarMakerMinimumMass, below which star particles are
not created. However, with H2StarMakerStochastic, if the
stellar mass is less than H2StarMakerMinimumMass, then a star
particle of mass equal to H2StarMakerMinimumMass is formed
stochastically with a probability of (stellar
mass)/H2StarMakerMinimumMass.

Important Note: There is no feedback scheme corresponding to this
star maker, so don’t set StarParticleFeedback = 2048. Instead the user
should select one of the feedback schemes associated with the other
star makers (StarParticleFeedback = 4 comes to mind).




Method 14: Kinetic Feedback

Select this method by setting StarParticleCreation = 16384 and
StarParticleFeedback = 16384.

Source: star_maker3mom.F

This method combines stochastic Cen & Ostriker star formation (method 1) with a
method for injecting both kinetic and thermal feedback energy into the grid.

The star formation method is identical to method 1, which supplements the star
formation perscripton of Cen & Ostriker (1992) with a stochastic star formation
recipe.  Like method 1, there is no Jeans instability check, however, unlike
method 1, the particle velocity is set to the gas velocity.

The star feedback method is described fully in Simpson et al. (2015) [http://adsabs.harvard.edu/abs/2014arXiv1410.3822S] (S15).  Feedback energy,
mass and metals are injected into a 3x3x3 CIC stencil cloud that is centered on
the particle position and mapped onto the physical grid.  The outer 26 cells of
the cloud stencil impart kinetic energy to the physical grid.  The amount of
momentum injected into each cell is computed assuming a fixed budget of kinetic
energy and the direction of the injected momentum is taken to point radially
away from the star particle.


[image: CIC stencil overlap with the physical grid.  The direction of imparted momentum is indicated with arrows.  [Figure 1 S15]]


CIC stencil overlap with the physical grid.  The direction of imparted momentum is indicated with arrows.  [Figure 1 S15]

As with methods 0 and 1, the total amount of feedback energy injected into the
grid in a given timestep is


	Mform * c2 * StarEnergyToThermalFeedback



This energy is divided between thermal and kinetic energies.  This is despite
the name of StarEnergyToThermalFeedback, which would indicate that it is
just thermal energy.  This name was kept for consistency with other star
makers.

If StarMakerExplosionDelayTime is negative, Mform is computed
as it is for star maker methods 0 and 1 as described above.  If
StarMakerExplosionDelayTime >= 0.0 then Mform is the initial
star particle mass.  In this case, all energy, mass and metals are injected
in a single timestep that is delayed from the formation time of the star
particle creation by the value of StarMakerExplosionDelayTime, which
is assumed to be in units of Myrs.  When the feedback is done in a discrete
explosion, the star particle field called dynamical_time is instead used
as a binary flag that indicates wheter the particle has done its feedback
or not (it is set to 1 pre-explosion and 0 once the explosion has been done).
When StarMakerExplosionDelayTime < 0.0, dynamical_time has its
usual meaning.

The amount of energy that takes kinetic form is fixed to be


	Mform * c2 * StarEnergyToThermalFeedback * fkin



If StarFeedbackKineticFraction is between 0.0 and 1.0, fkin =
StarFeedbackKineticFraction.  If StarFeedbackKineticFraction < 0.0,
then fkin is variable and depends on the gas density, metallicity and
resolution surrounding the star particle at the time of the injection.
Equations (16), (17) and (18) in S15 describe how this variable fraction
is computed.

The injection of mass and metals is distributed evenly over the CIC stencil
cloud and is done in proportion to Mform as described in method 0.
The same parameters that control the mass and yield of ejected material are
the same (i.e. StarMassEjectionFraction and StarMetalYield).

The discrete explosion mode and the variable kinetic energy injection mode
are intended for use with low mass star particles which produce energy
equivalent to only one or a few supernovae.




Restarting a Simulation With Star Formation or Feedback

Sometimes it is convenient to run a simulation for a while until it comes
to some sort of equilibrium before turning on star formation.

If a simulation is initialized with star formation and feedback turned off,
particles in the simulation will not have the necessary particle attribute
fields Enzo uses to track data like the formation time, dynamical time,
and metallicity.

To restart a simulation including star formation or feedback, simply edit
the parameter file written to disk in the data dump folder (i.e. for a dataset
named DD0100, the parameter file will typically be named DD0100/DD0100.
Change the parameters StarParticleCreation or StarParticleFeedback to
the values needed for your simulation, and restart the simulation.  Enzo will
detect that it needs to create particle attribute fields and allocate the
necessary memory above what is needed to read in the dataset.




Distributed Stellar Feedback

The following applies to Methods 0 (Cen & Ostriker) and 1 (+
stochastic star formation).

The stellar feedback can be evenly distributed over the neighboring
cells if StarFeedbackDistRadius > 0.  The cells are within a cube
with a side StarFeedbackDistRadius+1.  This cube can be cropped to
the cells that are StarFeedbackDistCellStep cells away from the
center cell, counted only in steps in Cartesian directions.  Below we
show a couple of two-dimensional examples. The number on the cells indicates the number cell steps each is from the central cell.


	StarFeedbackDistRadius = 1




[image: Distributed feedback with radius 1]


Only cells with a step number <= StarFeedbackDistCellStep have feedback applied to them. So, StarFeedbackDistCellStep = 1 would result in only the cells marked with a “1” receiving energy. In three-dimensions, the eight corner cells in a 3x3x3 cube would be removed by setting StarFeebackDistCellStep = 2.


	StarFeedbackDistRadius = 2




[image: Distributed feedback with radius 2]


Same as the figure above but with a radius of 2.

Feedback regions cannot extend past the host grid boundaries. If the region specified will extend beyond the edge of the grid, it is recentered to lie within the grid’s active dimensions. This conserves the energy injected during feedback but results in the feedback sphere no longer being centered on the star particle it originates from. Due to the finite size of each grid, we do not recommend using a StarFeedbackDistRadius of more than a few cells.

Also see Star Formation and Feedback Parameters.




Notes

The routines included in star_maker1.F are obsolete and not
compiled into the executable.  For a more stable version of the
algorithm, use Method 1.
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Hydro and MHD Methods

There are four available methods in Enzo for calculating the evolution
of the gas with and without magnetic fields. Below is a brief
description of each method, including the parameters associated with
each one and a link to further reading.
For relevant parameters please also see Hydrodynamics Parameters.

Additionally, there are two MHD methods, which are described in detail in MHD Methods


Method 0: Piecewise Parabolic Method (PPM)

Source:  Grid_SolvePPM_DE.C

The PPM scheme uses a parabolic function to estimate the left and
states of the Godunov problem.  This more accurately represents both
smooth gradients and discontinuities over linear interpolation,
i.e. PLM.


Parameters

Main call: HydroMethod = 0

RiemannSolver: specifies the type of solver, where the following
only works with the PPM solver.


	HLL (Harten-Lax-van Leer) a two-wave, three-state solver with no
resolution of contact waves.  This is the most diffusive of the
available three solvers in PPM.  New for version 2.1




	HLLC (Harten-Lax-van Leer with Contact) a three-wave, four-state
solver with better resolution of contacts.  The most resilient to
rarefaction waves (e.g. blastwave interiors). New for version 2.1

	Default Two-shock approximation.  Iterative solver.



RiemannSolverFallback: allows for the Riemann solver to “fallback”
to the more diffusive HLL solver when negative energies or densities
are computed.  Only applicable when using the HLLC and Two-shock
solvers.  The fluxes in the failing cell are recomputed and used in
the Euler update of the gas quantities. New for version 2.1

ConservativeReconstruction: When interpolating (PPM) to the left
and right states, interpolation occurs in the conserved variables
(density, momentum, and energy) instead of the primitive variables
(density, velocity, and pressure).  This results in more accurate
results in unigrid simulations but can cause errors with AMR.  See
Section 4.2.2 (steps 1-5) and Appendices A1 and B1 in Stone et
al. (2008, ApJS 178, 137).  New for version 2.1

DualEnergyFormalism: allows the total and thermal energy to be
followed seperately during the simulation. Helpful when the velocities
are high such that Etotal>> Ethermal.

PPMFlatteningParameter

PPMSteepeningParameter




Links

P. R. Woodward and P. Colella. “A piecewise parabolic method for gas
dynamical simulations,” J. Comp. Phys, 54:174, 1984 link [https://seesar.lbl.gov/anag/publications/colella/A_1_4_1984.pdf]






Method 2: ZEUS

Source: ZeusSource.C, Zeus_xTransport.C, Zeus_yTransport.C,
Zeus_zTransport.C, Grid_ZeusSolver.C, ZeusUtilities.C

ZEUS is a finite-difference method of solving hyperbolic PDEs instead
of solving the Godunov problem.  It is a very robust but relatively
diffusive scheme.


Parameters

Main call: HydroMethod = 2

ZEUSQuadraticArtificialViscosity

ZEUSLinearArtificialViscosity




Links

J. M. Stone and M. L. Norman. “Zeus-2D: A radiation
magnetohydrodynamics code for astrophysical flows in two space
dimensions. I. The hydrodynamics algorithms and tests.”  The
Astrophysical Journal Supplement, 80:753, 1992 link [http://adsabs.harvard.edu/abs/1992ApJS...80..753S]

J. M. Stone and M. L. Norman. “Zeus-2D: A radiation
magnetohydrodynamics code for astrophysical flows in two space
dimensions. II. The magnetohydrodynamic algorithms and tests.” The
Astrophysical Journal Supplement, 80:791, 1992 link [http://adsabs.harvard.edu/abs/1992ApJS...80..791S]






Method 3: MUSCL


New in version 2.0.



The MUSCL [1] scheme is a second-order accurate extensive of Godunov’s
method for solving the hydrodynamics in one dimension.  The
implementation in Enzo uses second-order Runge-Kutta time
integration.  In principle, it can use any number of Riemann solvers
and interpolation schemes.  Here we list the compatible ones that are
currently implemented.


Parameters

Parameter file call: HydroMethod = 3

RiemannSolver: specifies the type of solver, where the following
only works with the MUSCL solver.


	HLL (Harten-Lax-van Leer): a two-wave, three-state solver with no
resolution of contact waves.




	LLF (Local Lax-Friedrichs) is based on central differences instead
of a Riemann problem.  It requires no characteristic information.
This is the most diffusive of the available three solvers in
MUSCL.

	HLLC (Harten-Lax-van Leer with Contact): a three-wave, four-state
solver with better resolution of contacts.  The most resilient to
rarefaction waves (e.g. blastwave interiors).



If negative energies or densities are computed, the solution is
corrected using a more diffusive solver, where the order in decreasing
accuracy is HLLC -> HLL -> LLF.

ReconstructionMethod: specifies the type of interpolation scheme
used for the left and right states in the Riemann problem.


	PLM: default

	PPM: Currently being developed.








Method 4: MHD with Hyperbolic Cleaning (Dedner)

The two MHD methods in Enzo differ primarily in the mechanism for maintaining
[image: \nabla \cdot B = 0].
These are described in more detail in MHD Methods

HydroMethod = 4 uses the hyperbolic cleaning method of Dedner et al. (2002, JCP 175, 645).  The basic
integration is the MUSCL 2nd order Runga Kutta method described above.  As
HydroMethod = 3, there are three Riemann solver options, though instead of
HLLC, HLLD is available


	HLL (Harten-Lax-van Leer): a two-wave, three-state solver with no
resolution of contact waves.




	LLF (Local Lax-Friedrichs) is based on central differences instead
of a Riemann problem.  It requires no characteristic information.
This is the most diffusive of the available three solvers in
MUSCL.




	HLLD (Harten-Lax-van Leer with Discontinuities): a 5-wave, six-state
solver.  HLLD includes two fast waves, two Alfven waves, and one contact
discontinuity.



ReconstructionMethod: specifies the type of interpolation scheme
used for the left and right states in the Riemann problem.


	PLM: default

	PPM: Currently being developed.




Parameters

Parameter file call: HydroMethod = 4






Method 6: MHD with Constrained Transport (CT)

HydroMethod = 6 uses the CT method, which computes an electric field from
the Riemann solver, then uses that electric field to update the magnetic field.


Parameters

Parameter file call: HydroMethod = 6






Method 5: No Hydro


New in version 2.0.



For testing non-hydro machinery in Enzo, one can turn hydro off.


Parameters

Parameter file call: HydroMethod = 5






Notes

HydroMethod = 1 was an experimental implementation that is now
obsolete, which is why it is skipped in the above notes.

Footnotes




	[1]	Monotone Upstream-centered Schemes for Conservation Laws










          

      

      

    


    
         Copyright 2012, Enzo Developers.
      Last updated on Mar 09, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Enzo 2.5 documentation 

          	Physics Modules in Enzo 
 
      

    


    
      
          
            
  
Cooling and Heating of Gas

Enzo features a number of different methods for including radiative
cooling.  These range from simple tabulated, analytical approximations
to very sophisticated non-equilibrium primoridal chemistry.  All of
these methods require the parameter RadiativeCooling be set to 1.
Other parameters are required for using the various methods, which are
described below.
For relevant parameters, please also see Cooling Parameters.


MultiSpecies = 0: Sarazin & White

Source: solve_cool.F, cool1d.F

RadiativeCooling = 1

MultiSpecies = 0

This method uses an analytical approximation from Sarazin & White
(1987, ApJ, 320, 32) for a fully ionized gas with metallicity of 0.5
solar.  This cooling curve is valid over the temperature range from
10,000 K to 109 K.  Since this assumes a fully ionized gas, the
cooling rate is effectively zero below 10,000 K.

Note: In order use this cooling method, you must copy the file,
cool_rates.in, from the input directory into your simulation directory.




MultiSpecies = 1, 2, or 3: Primordial Chemistry and Cooling

Source: multi_cool.F, cool1d_multi.F

This method follows the nonequilibrium evolution of primordial
(metal-free) gas.  The chemical rate equations are solved using a
semi-implicit backward differencing scheme described by Abel et
al. (1997, New Astronomy, 181) and Anninos et al. (1997, New
Astronomy, 209).  Heating and cooling processes include atomic line
excitation, recombination, collisional excitation, free-free
transitions, Compton scattering of the cosmic microwave background and
photoionization from a variety of metagalactic UV backgrounds.  For
MultiSpecies > 1, molecular cooling is also included and UV
backgrounds that include photodissociation may also be used.
Numerous chemistry and cooling rates have been added or updated.  For
the exact reference for any given rate, users are encouraged to
consult calc_rates.F.


	Atomic

RadiativeCooling = 1

MultiSpecies = 1

Only atomic species, H, H+, He, He+, He++, and e- are followed.  Since
molecular species are not treated, the cooling is effectively zero for
temperatures below roughly 10,000 K.



	Molecular Hydrogen

RadiativeCooling = 1

MultiSpecies = 2

Along with the six species above, H2, H2+, and H- are also followed.
In addition to the rates described in Abel et al. (1997) and Anninos
et al. (1997), H2 formation via three-body reactions as described by
Abel, Bryan, and Norman (2002, Science, 295, 93) is also included.
This method is valid in the temperature range of 1 K to 108 K and up to number densities of roughly 109 cm-3.
Additionally, three-body heating (4.48eV per molecule formed or dissociated)
is added as appropriate.



	Deuterium

RadiativeCooling = 1

MultiSpecies = 3

In addition to the nine species solved with MultiSpecies = 2,
D, D+, and HD are also followed.  The range of validity
is the same as for MultiSpecies = 2.








Metal Cooling

Three distinct methods to calculate the cooling from elements heavier
than He exist.  These are selected by setting the MetalCooling
parameter to 1, 2, or 3.


	John Wise’s metal cooling.

RadiativeCooling = 1

MetalCooling = 1



	Cen et al (1995) cooling. This uses output from a Raymond-Smith
code to determine cooling rates from T > 104K.  No ionizing
background is used in computing cooling rates.  This method has
not been extensively tested in the context of Enzo.

RadiativeCooling = 1

MetalCooling = 2



	Cloudy cooling.

Source: cool1d_cloudy.F

RadiativeCooling = 1

MetalCooling = 3

MultiSpeces = 1, 2, or 3

Cloudy cooling operates in conjunction with the primordial
chemistry and cooling from MultiSpecies set to 1, 2, or 3.
As described in Smith, Sigurdsson, & Abel (2008), Cloudy cooling
interpolates over tables of precomputed cooling data using the
Cloudy photoionization software (Ferland et al. 1998, PASP, 110,
761, http://nublado.org).  The cooling datasets can be from one to
five dimensional.  The range of validity will depends on the
dataset used.


	Temperature

	Density and temperature.

	Density, metallicity, and temperature.

	Density, metallicity, electron fraction, and temperature.

	Density, metallicity, electron fraction, redshift of UV
background, and temperature.



See Cloudy Cooling for additional parameters that control
the behavior of the Cloudy cooling.  For more information on
obtaining or creating Cloudy cooling datasets, contact Britton
Smith (brittonsmith@gmail.com).








UV Meta-galactic Backgrounds

Source: RadiationFieldCalculateRates.C

A variety of spatially uniform photoionizing and photodissociating
backgrounds are available, mainly by setting the parameter
RadiationFieldType.  These radiation backgrounds are redshift
dependent and work by setting the photoionization and photoheating
coeffiecients for H, He, and He+.  See
Background Radiation Parameters for the additional parameters that
control the UV backgrounds.
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Radiative Transfer


New in version 2.0.



For relevant parameters, please also see Radiative Transfer (Ray Tracing) Parameters and Radiative Transfer (FLD) Parameters.


Adaptive Ray Tracing

Solving the radiative transfer equation can be computed with adaptive
ray tracing that is fully coupled with the hydrodynamics and energy /
rate solvers.  The adaptive ray tracing uses the algorithm of Abel &
Wandelt (2002) that is based on the HEALPix framework.

For the time being, a detailed description and test suite can be found
in the paper Wise & Abel (2011, MNRAS 414, 3458).




Flux Limited Diffusion

More details can be found in the paper Reynolds et al. (2009, Journal
of Computational Physics 228, 6833).
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Shock Finding


New in version 2.1.



For relevant parameters, please also see Shock Finding Parameters.

Source: Grid_FindShocks.C

Shock finding is accomplished using one of four methods.  The primary
method uses a coordinate-unsplit temperature jump (method 1), as described in
Skillman et. al. 2008 [http://adsabs.harvard.edu/abs/2008ApJ...689.1063S] with the
exception that instead of searching across multiple grids for the pre-
and post-shock cells, we terminate the search at the edge of the ghost
zones within each grid.

Shock finding is controlled by the ShockMethod parameter, which
can take the following values:

0 - Off

1 - Unsplit Temperature Jumps

2 - Dimensionally Split Temperature Jumps

3 - Unsplit Velocity Jumps

4 - Dimensionally Split Velocity Jumps

When ShockMethod nonzero, this will create a “Mach” field in the
output files.

Note: Method 1 has been used the most by the developer, and therefore
is the primary method.  Method 2 has been tested quite a bit, but the
downsides of using a dimensionally split method are outlined in the
above paper.  Methods 3 and 4 are more experimental and will run, but
results may vary.

Additional Shock Finding Parameters:

ShockTemperatureFloor - When calculating the mach number using temperature jumps, set the temperature floor in the calculation to this value.

StorePreShockFields - Optionally store the Pre-shock Density and Temperature during data output.
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Cosmic Ray Two-Fluid Model


New in version 2.2.



For relevant parameters, please also see Cosmic Ray Two-Fluid Model Parameters.

Source: Grid_ZeusSolver.C

Models dynamical role of cosmic rays via a set of two-fluid hydro equations
(see Jun et. al. 1994 [http://adsabs.harvard.edu/abs/1994ApJ...429..748J] ). Central to the effort
is a new baryon field, CREnergyDensity, which is in units of ergs/cm^3, and is
advected along with the gas. Gradients in the CR field result in a pressure
felt by the gas. The CR gas is also diffusive and rays can be produced during
star formation. See Cosmic Ray Two-Fluid Model Parameters for information on how to control all
these options. But most important:



	CRModel - Switches on the CR physics (0 = off, 1 = on)

	CRgamma - For polytropic equation of state. 4/3 = relativistic, adiabatic gas (default)

	CRDiffusion - turns on diffusion of CREnergyDensity field

	CRkappa - Diffusion coefficient (currently constant, isotropic)

	CRFeedback - Controls production of rays in star forming regions






For this model to run properly you must be running the Zeus Hydro
Solver: HydroMethod = 2. The model has not been implemented for
higher order solvers.

If you plan on including cosmic rays, definitely first verify the solver is working by running
the Cosmic Ray Shocktube problem, which ought to match the analytic solution described in
Pfrommer 2006 [http://adsabs.harvard.edu/abs/2006MNRAS.367..113P] . See the Test Problem
Parameter list for more information.

Cosmic Rays have also been implemented in the isolated galaxy simulation. They initialize with
a profile equal to the density of the thermal gas, multiplied by a constant, GalaxySimulationCR, typically
set to 0.1 (all in code units).
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Developer’s Guide

Here we will document some of the actual code details in Enzo, and how to
perform basic (and not so basic) tasks in Enzo.  Before tackling any
modification, please read the Enzo Primary References  a basic knowledge
of AMR and numerical methods is assumed throughout this documentation.



	Introduction to Enzo Modification
	Mercurial Introduction

	Enzo Source Trees

	How To Share Changes

	How To Use Branching

	The Patch Directory

	How To Include Tests





	Programming Guide
	Remember that other programmers will read your code

	Comments

	float is double

	Allocating arrays with new

	Fortran types

	Header Files

	Accessing BaryonField

	Accessing the Hierarchy

	enum





	File naming conventions and routine locations
	Grid methods

	Communication methods

	Core methods

	External boundary methods

	Halo finder methods

	Hydrodynamics methods

	Chemistry and energy solvers

	Gravity methods

	Hierarchy methods

	Radiation methods

	I/O

	Star formation methods

	Utilities





	Debugging Enzo with GDB
	I. Running multiple GDB processes that each run Enzo

	II. Attaching GDB to existing Enzo processes

	Modify Enzo to allow GDB to attach to a running Enzo process

	Run Enzo

	Attach and Debug With GDB





	Fine Grained Output

	Adding a new parameter to Enzo

	How to add a new baryon field
	Conservation





	Variable precision in Enzo
	Floating-point precision

	Integer precision

	Precision macros and printf/scanf

	The Fortran-C++ interface

	If you need more details…





	Adding new refinement criteria
	Writing your code to flag cells

	Call your method





	Auto adjusting refine region
	Problem

	Solution





	Accessing Data in BaryonField

	Grid Field Arrays
	Class Description

	Access Methods

	Field Numbers and Names

	Using the Methods

	Field List Reference





	Adding a new Local Operator.

	Adding a new Test Problem.
	Overview

	Adding Setup Files and Defining a New Problem Type

	MyProblemInitialize

	MyProblemInitializeGrid





	Using Parallel Root Grid IO

	MHD Methods

	Cosmology

	Use of Dedner

	Use of MHD-CT

	Controlling MHD in the code

	Cosmology

	MHDCT Details
	Parameter Compatibility

	Initialization

	Data Structures

	Interpolation

	Projection and Flux Correction

	Future Work (or, “Projects for Interested Students”)





	Doing a Release
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Introduction to Enzo Modification


Note

This is not a comprehensive document, but it does cover some of the
grounds of modifying Enzo.  Please don’t hesitate to email the users’
mailing list with any further questions about Enzo, Mercurial, or how
to write and execute new test problems.



If this is the first time you’ve opened the hood to Enzo, welcome.  If you’re
an old hand and have already added new physics to it, welcome back.

Enzo is an extremely powerful piece of software, but by no means a complete
representation of the observable universe. It’s quite likely that there will be
some piece of physics that you’ll want to model, and these span a broad range
of software complexities. In all cases, whether it’s a mildly invasive change
such as a new background heating model or extremely invasive like adding
relativistic non-neutral multi-fluid plasma physics, we strongly recommend
taking advantage of some basic tools. These are outlined in the sections that
follow.  These tools prevent the developer from breaking existing features
(which is far easier than one would expect), keeping track of your changes, and
sharing those changes with others. We strongly recommend you start with getting
LCATest running before you start programming, so mistakes can be caught early.

Additionally in the Tutorials section you’ll see a pair of flow chart tools
that are intended as educational tools, and several descriptions on how to
actually add various components to the code.  It is intended that these will be
at least read in order, as doing complex things with the code require the
ability to do the simpler things.

We are very happy to accept patches, features, and bugfixes from any member of
the community!  Enzo is developed using mercurial, primarily because it enables
very easy and straightforward submission of changesets.  We’re eager to hear
from you, and if you are developing Enzo, please subscribe to the users’
mailing list:

http://groups.google.com/group/enzo-users

This document describes how to use Mercurial to make changes to Enzo, how to
send those changes upstream, and how to navigate the Enzo source tree.


Mercurial Introduction

If you’re new to Mercurial, these three resources are pretty great for learning
the ins and outs:



	http://hginit.com

	http://hgbook.red-bean.com/read/

	http://mercurial.selenic.com/






The major difference between Mercurial (and other distributed version control
systems) and centralized version control systems (like CVS, RCS, SVN) is that
of the directed acyclic graph (DAG).  Rather than having a single timeline of
modifications, Mercurial (or “hg”) can have multiple, independent streams of
development.

There are a few concepts in Mercurial to take note of:


	Changesets

	Every point in the history of the code is referred to as a changeset.  These
are specific states of the code, which can be recovered at any time in any
checkout of the repository.  These are analagous to revisions in Subversion.

	Children

	If a changeset has changesets that were created from its state, those are
called children.  A changeset can have many children; this is how the graph
of development branches.

	Heads

	Every changeset that has no children is called a head.

	Branches

	Every time the DAG branches, these are branches.  Enzo also uses “named
branches,” where the branches have specific identifiers that refer to the
feature under development or some other characteristic of a line of
development.



When you check out the Enzo repository, you receive a full and complete copy of
the entire history of that repository; you can update between revisions at
will without ever touching the network again.  This allows not only for
network-disconnected development, but it also means that if you are creating
some new feature on top of Enzo you can (and should!) conduct local version
control on your development.  Until you choose explicitly to share changes,
they will remain private to your checkout of the repository.




Enzo Source Trees

Enzo has two primary repositories, the “stable” repository which is curated and
carefully modified, and the “development” repository which is where active
development occurs.  Please note that while we test and verify the results of
the “stable” repository, the “unstable” repository is not guaranteed to be
tested, verified, or even to provide correct answers.


Note

The “stable” Enzo source tree is not for general development.  If
you want to contribute to Enzo, make your changes to a fork of the
development repository!



To conceptually – and technically! – separate these two repositories, they
also live in different places.  We keep both the stable repository
and the development repository at BitBucket.  Enzo is (as of 2.4) developed in
a relatively simple fashion:



	On BitBucket, developers “fork” the primary development repository.

	When a piece of work is ready to be shared, a “pull request” is issued.
This notifies the current set of Enzo curators that a new feature has been
suggested for inclusion.

	After these features have been accepted, they are pulled into the
development branch.  New features will be aggregated into patch
releases on the “stable” branch.

	When a new patch release is issued, the current development branch is
pushed to the “enzo-dev” repository on Bitbucket.






The idea here is that there is a double firewall: the development branch is
very high-cadence and with high-turnover, but the stable branch is much
slower, more carefully curated, and inclusions in it are well-tested.



	code lives at: http://bitbucket.org/enzo/enzo-dev









How To Share Changes

Sharing your changes to Enzo is easy with Mercurial and the BitBucket
repository.

Go here:

http://bitbucket.org/enzo/enzo-dev/fork

Now, clone your new repository.  Make your changes there.  Now go back and
issue a pull request.  For instance, you might do something like this:



	Clone Enzo, make a few changes, commit them, and decide you want to share.

	Fork the main enzo repository at that link.

	Now, edit .hg/hgrc to add a new path, and push to that path.

	Go to the BitBucket URL for your new repository and click “Pull Request”.
Fill it out, including a summary of your changes, and then submit.  It will
get evaluted – and it might not get accepted right away, but the response
will definitely include comments and suggestions.






That’s it!  If you run into any problems, drop us a line on the Enzo Users’
Mailing List [http://groups.google.com/group/enzo-users].




How To Use Branching


Warning

In most cases, you do not need to make a new named branch!  Do
so with care, as it lives forever.



If you are planning on making a large change to the code base that may not be
ready for many, many commits, or if you are planning on breaking some
functionality and rewriting it, you can create a new named branch.  You can
mark the current repository as a new named branch by executing:

$ hg branch new_feature_name





To merge changes in from another branch, you would execute:

$ hg merge some_other_branch





Note also that you can use revision specifiers instead of “some_other_branch”.
When you are ready to merge back into the main branch, execute this process:

$ hg merge name_of_main_branch
$ hg commit --close-branch
$ hg up -C name_of_main_branch
$ hg merge name_of_feature_branch
$ hg commit





When you execute the merge you may have to resolve conflicts.  Once you resolve
conflicts in a file, you can mark it as resolved by doing:

$ hg resolve -m path/to/conflicting/file.py





Please be careful when resolving conflicts in files.

Once your branch has been merged in, mark it as closed on the wiki page.




The Patch Directory

If you are experimenting with a code change or just debugging, then
the patch directory, found in the top level of your Enzo directory,
may be of use. Files put in here are compiled in preference to those
in /src/enzo, so you can implement changes without overwriting the
original code. To use this feature, run make from inside
/patch. You may need to add -I../src/enzo to the
MACH_INCLUDES line of your machine makefile
(e.g. Make.mach.triton) to ensure the .h files are found when compiling.

As an example, suppose you wish to check the first few values of the acceleration field as Enzo runs through EvolveLevel.C. Copy EvolveLevel.C from /src/enzo into /patch and put the appropriate print statements throughout that copy of the routine. Then recompile Enzo from inside the patch directory. When you no longer want those changes, simply delete EvolveLevel.C from /patch and the next compile of the code will revert to using the original /src/enzo/EvolveLevel.C. If you make adjustments you wish to keep, just copy the patch version of the code into /src/enzo to replace the original.




How To Include Tests

If you have added any new functionality, you should add it as a test in the
directory tree run/ under the (possibly new!) appropriate directory.  Your
test file should consist of:



	A parameter file, ending in the extension .enzo

	A file of notes.txt, describing the problem file, the expected results,
and how to verify correctness

	A test file, using the yt extension enzo_test, which verifies
correctness.  (For more information on this, see some of the example test
files.)

	(optional) Scripts to plot the output of the new parameter file.






Please drop a line to the mailing list if you run into any problems!
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Programming Guide

There are several coding practices that we should adhere to when
programing for Enzo. Some are style, some are more important for
the health of the code (and other Enzo users’ projects/sanity).


Remember that other programmers will read your code


“Everyone knows that debugging is twice as hard as writing a
program in the first place. So if you’re as clever as you can be
when you write it, how will you ever debug it?”
–Brian Kernighan “The Elements of Programming Style”, 2nd edition,
chapter 2





Comments

At the very least, put the following in things at the top of each
of your functions:


	Your name

	The date you wrote it. If you modified it in a significant way,
note the date and modification.

	Effects on global or class member variables.

	Variable names that are not obvious. As a rule of thumb, the
name is not obvious.

	Primary references where applicable.



Two more rules:


	Write your comments now. You will not have time to come back and
clean it up later.

	If you change something, change the comments. Now. Wrong
comments are worse than no comments.






float is double

One must constantly be wary of the possibility of built in C types
to be re-defined to higher precision types. This is outlined
in Variable precision in Enzo.




Allocating arrays with new

Enzo has a significant issue with memory fragmentation.  This is due
to grid and particle storage arrays being constantly created,
destroyed, and re-created with slightly different sizes.  The most
successful solution to this problem has been to limit the sizes of
arrays to powers of 2.  When compiling Enzo with log2alloc-yes,
new is overloaded such that arrays are always created with sizes
that are the nearest power of 2.  Thus, it is important to keep in
mind that arrays created with new will usually be slightly
larger than you think.




Fortran types

Unlike Enzo’s C and C++ routines, Fortran files (.F and .F90) do not
re-define the built-in ‘integer’ and ‘real’ types, so all variables
and constants must be defined with the appropriate precision.  There
are pre-defined type specifiers that will match Enzo’s C and C++
precision re-definitions, which should be used for all variables that
pass through the C/Fortran interface.  This is discussed in detail in
Variable precision in Enzo.




Header Files

Header files must be included in the correct order. This is due, among other
things, to the redefinition of float which is done in
macros_and_parameters.h. This must be done before Enzo headers, but after
external libraries. The order should be as follows:

#include "ErrorExceptions.h"
#include "svn_version.def"
#include "EnzoTiming.h"
#include "performance.h"
#include "macros_and_parameters.h"
#include "typedefs.h"
#include "global_data.h"
#include "units.h"
#include "flowdefs.h"
#include "Fluxes.h"
#include "GridList.h"
#include "ExternalBoundary.h"
#include "Grid.h"
#include "Hierarchy.h"
#include "LevelHierarchy.h"
#include "TopGridData.h"
#include "communication.h"
#include "CommunicationUtilities.h"








Accessing BaryonField

Access data in the BaryonField array as is described in the page on
Accessing Data in BaryonField.




Accessing the Hierarchy

The hierarchy should be traversed as described in
Getting Around the Hierarchy: Linked Lists in Enzo.




enum

The enum construct in C has no standardized size, which can cause
problems when using 64 bit integers. Direct integer assignment
should be used instead. This also has the added advantage of making
explicit the values of parameters that are also used in parameter
files. The typical idiom should be:

#ifdef SMALL_INTS
typedef int hydro_method;
#endif
#ifdef LARGE_INTS
typedef long_int hydro_method;
#endif
const hydro_method
  PPM_DirectEuler      = 0,
  PPM_LagrangeRemap    = 1,
  Zeus_Hydro           = 2,
  HD_RK                = 3,
  MHD_RK               = 4,
  HydroMethodUndefined = 5;
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File naming conventions and routine locations

The large number of source files can be intimidating even to the
experienced Enzo developer, and this page describes some of the naming
conventions.  Familiarity with grep or ack and pipes like ls
-1 | grep are essential.  Also routines with a similar functionality
are grouped together with a common name.

Here are some file naming rules that are used.


	Internal capitalization is used for C files, all lowercase with
underscores for fortran files and header files. All Fortran files
end with .F.

	With very few exceptions, Enzo has a one function per file layout, with the
file name being the function name.

	Object methods have the object name prepended to the beginning,
such as the member of the grid class SolveHydroEquations lives
in the file Grid_SolveHydroEquations.C.



Below we list some examples of filenames, grouped by functionality.
This is not a complete list of files in Enzo.


Contents


	File naming conventions and routine locations
	Grid methods
	Initializers

	Particles

	Solvers

	Gravity and acceleration

	Hierarchy control

	Utilities

	Conduction

	Radiation

	I/O

	Communcation

	Feedback

	Analysis

	Turbulence





	Communication methods

	Core methods

	External boundary methods

	Halo finder methods

	Hydrodynamics methods

	Chemistry and energy solvers

	Gravity methods

	Hierarchy methods

	Radiation methods
	Flux limited diffusion

	Adaptive ray tracing





	I/O

	Star formation methods

	Utilities










Grid methods


Initializers

Grid_NohInitializeGrid.C
Grid_OneZoneFreefallTestInitializeGrid.C
Grid_NestedCosmologySimulationInitializeGrid.C
Grid_RHIonizationTestInitializeGrid.C
Grid_RadHydroStreamTestInitializeGrid.C
Grid_RadiatingShockInitializeGrid.C








Particles

Grid_AddParticlesFromList.C
Grid_MoveAllParticles.C
Grid_MoveSubgridParticlesFast.C
Grid_TracerParticleCreateParticles.C
Grid_TracerParticleOutputData.C
Grid_TracerParticleSetVelocity.C
Grid_TransferSubgridParticles.C
Grid_TransferSubgridStars.C
Grid_UpdateParticlePosition.C
Grid_UpdateParticleVelocity.C








Solvers

Grid_ComputeCoolingTime.C
Grid_ComputeDustTemperatureField.C
Grid_ComputeGammaField.C
Grid_ComputePressure.C
Grid_MultiSpeciesHandler.C
Grid_SolveHydroEquations.C
Grid_SolvePPM_DE.C
Grid_SolvePrimordialChemistryCVODE.C
Grid_SolveRadiativeCooling.C
Grid_SolveRateAndCoolEquations.C
Grid_SolveRateEquations.C
Grid_ZeusSolver.C
Grid_xEulerSweep.C
Grid_yEulerSweep.C
Grid_zEulerSweep.C








Gravity and acceleration

Grid_AddBaryonsToGravitatingMassField.C
Grid_AddExternalAcceleration.C
Grid_AddExternalPotentialField.C
Grid_ComputeAccelerationField.C
Grid_ComputeAccelerationFieldExternal.C
Grid_ComputeAccelerations.C
Grid_ComputeAccelerationsFromExternalPotential.C
Grid_DepositBaryons.C
Grid_DepositMustRefineParticles.C
Grid_DepositParticlePositions.C
Grid_PrepareFFT.C
Grid_PrepareGreensFunction.C
Grid_PreparePotentialField.C
Grid_SolveForPotential.C








Hierarchy control

Grid_AddFieldMassToMassFlaggingField.C
Grid_AddOverlappingParticleMassField.C
Grid_AllocateGrids.C
Grid_CopyZonesFromGrid.C
Grid_FlagCellsToAvoidRefinement.C
Grid_FlagCellsToAvoidRefinementRegion.C
Grid_FlagCellsToBeRefinedByCoolingTime.C
Grid_FlagCellsToBeRefinedByJeansLength.C
Grid_FlagCellsToBeRefinedByMass.C
Grid_SetFlaggingField.C
Grid_SetFlaggingFieldStaticRegions.C








Utilities

Grid_AccessBaryonFields.C
Grid_ComputeTemperatureField.C
Grid_IdentifyColourFields.C
Grid_IdentifyGloverSpeciesFields.C
Grid_IdentifyNewSubgrids.C
Grid_IdentifyNewSubgridsSmall.C
Grid_IdentifyPhysicalQuantities.C
Grid_IdentifyRadiationPressureFields.C
Grid_IdentifyRadiativeTransferFields.C
Grid_IdentifyShockSpeciesFields.C
Grid_IdentifySpeciesFields.C








Conduction

Grid_ConductHeat.C
Grid_ConductionBubbleInitialize.C
Grid_ConductionCloudInitialize.C
Grid_ConductionTestInitialize.C








Radiation

Grid_AddH2Dissociation.C
Grid_AddRadiationImpulse.C
Grid_AddRadiationPressureAcceleration.C
Grid_AllocateInterpolatedRadiation.C
Grid_ComputePhotonTimestep.C
Grid_ComputePhotonTimestepHII.C
Grid_ComputePhotonTimestepTau.C
Grid_FinalizeRadiationFields.C
Grid_PhotonPeriodicBoundary.C
Grid_PhotonSortLinkedLists.C
Grid_SetSubgridMarkerFromParent.C
Grid_SetSubgridMarkerFromSibling.C
Grid_SetSubgridMarkerFromSubgrid.C
Grid_Shine.C








I/O

New_Grid_ReadGrid.C
New_Grid_WriteGrid.C
Grid_WriteNewMovieData.C
Grid_WriteNewMovieDataSeparateParticles.C








Communcation

Grid_CommunicationMoveGrid.C
Grid_CommunicationReceiveRegion.C
Grid_CommunicationSendParticles.C
Grid_CommunicationSendPhotonPackages.C
Grid_CommunicationSendRegion.C
Grid_CommunicationSendStars.C
Grid_CommunicationTransferParticlesOpt.C
Grid_CommunicationTransferStarsOpt.C








Feedback

Grid_ChangeParticleTypeBeforeSN.C
Grid_AddFeedbackSphere.C
Grid_FindNewStarParticles.C








Analysis

Grid_CalculateAngularMomentum.C
Grid_ConvertToNumpy.C








Turbulence

Grid_AddRandomForcing.C
Grid_AppendForcingToBaryonFields.C
Grid_ComputeRandomForcingFields.C
Grid_DetachForcingFromBaryonFields.C
Grid_PrepareRandomForcingNormalization.C
Grid_ReadRandomForcingFields.C
Grid_RemoveForcingFromBaryonFields.C










Communication methods

CommunicationBroadcastValue.C
CommunicationBufferedSend.C
CommunicationCollectParticles.C
CommunicationCombineGrids.C
CommunicationInitialize.C
CommunicationLoadBalanceGrids.C
CommunicationLoadBalancePhotonGrids.C
CommunicationLoadBalanceRootGrids.C
CommunicationMergeStarParticle.C
CommunicationNonblockingRoutines.C
CommunicationParallelFFT.C
CommunicationPartitionGrid.C
CommunicationReceiveFluxes.C
CommunicationReceiveHandler.C
CommunicationReceiverPhotons.C
CommunicationSendFluxes.C
CommunicationShareGrids.C
CommunicationShareParticles.C
CommunicationShareStars.C
CommunicationSyncNumberOfParticles.C
CommunicationSyncNumberOfPhotons.C
CommunicationTransferParticlesOpt.C
CommunicationTransferPhotons.C
CommunicationTransferStarsOpt.C
CommunicationTransferSubgridParticles.C
CommunicationTranspose.C
CommunicationUpdateStarParticleCount.C
CommunicationUtilities.C








Core methods

EvolveLevel.C
EvolveHierarchy.C
enzo.C








External boundary methods

ExternalBoundary_AddField.C
ExternalBoundary_AppendForcingToBaryonFields.C
ExternalBoundary_DeleteObsoleteFields.C
ExternalBoundary_DetachForcingFromBaryonFields.C
ExternalBoundary_IdentifyPhysicalQuantities.C
ExternalBoundary_InitializeExternalBoundaryFaceIO.C
ExternalBoundary_Prepare.C
ExternalBoundary_ReadExternalBoundary.C
ExternalBoundary_SetDoubleMachBoundary.C
ExternalBoundary_SetExternalBoundary.C
ExternalBoundary_SetExternalBoundaryIO.C
ExternalBoundary_SetExternalBoundaryParticles.C
ExternalBoundary_SetShockPoolBoundary.C
ExternalBoundary_SetWavePoolBoundary.C
ExternalBoundary_SetWengenCollidingFlowBoundary.C
ExternalBoundary_WriteExternalBoundary.C








Halo finder methods

FOF.C
FOF_Finalize.C
FOF_Initialize.C
FOF_allocate.C
FOF_cmpfunc.C
FOF_density.C
FOF_forcetree.C
FOF_iindexx.C
FOF_indexx.C
FOF_ngbtree.C
FOF_nrutil.C
FOF_potential.C
FOF_properties.C
FOF_selectb.C
FOF_sort2_flt_int.C
FOF_sort2_int.C
FOF_sort_int.C
FOF_subfind.C
FOF_subgroups.C
FOF_unbind.C








Hydrodynamics methods

pgas2d.F
pgas2d_dual.F
twoshock.F
inteuler.F
intlgrg.F
intpos.F
intprim.F
intrmp.F
intvar.F
calc_eigen.F
calcdiss.F
euler.F
flux_hll.F
flux_hllc.F
flux_twoshock.F








Chemistry and energy solvers

solve_cool.F
solve_rate.F
solve_rate_cool.F
calc_photo_rates.F
calc_rad.F
calc_rates.F
calc_tdust_1d.F
calc_tdust_3d.F
cool1d.F
cool1d_cloudy.F
cool1d_koyama.F
cool1d_multi.F
cool1d_sep.F
cool_multi_lum.F
cool_multi_time.F
cool_time.F








Gravity methods

mg_calc_defect.F
mg_prolong.F
mg_prolong2.F
mg_relax.F
mg_restrict.F
FastFourierTransform.C
FastFourierTransformPrepareComplex.C
FastFourierTransformSGIMATH.C
PrepareDensityField.C
PrepareGravitatingMassField.C
PrepareIsolatedGreensFunction.C








Hierarchy methods

RebuildHierarchy.C
CopyZonesFromOldGrids.C
CreateSUBlingList.C
CreateSiblingList.C
DepositParticleMassFlaggingField.C
FastSiblingLocatorFinalize.C
FastSiblingLocatorInitialize.C
FastSiblingLocatorInitializeStaticChainingMesh.C
FindSubgrids.C
HilbertCurve3D.C
LoadBalanceHilbertCurve.C
LoadBalanceHilbertCurveRootGrids.C
LoadBalanceSimulatedAnnealing.C
TransposeRegionOverlap.C
UpdateFromFinerGrids.C








Radiation methods


Flux limited diffusion

RadiativeTransferCallFLD.C
RHIonizationClumpInitialize.C
RHIonizationSteepInitialize.C
RHIonizationTestInitialize.C
RadHydroConstTestInitialize.C
RadHydroGreyMarshakWaveInitialize.C
RadHydroPulseTestInitialize.C
RadHydroRadShockInitialize.C
RadHydroStreamTestInitialize.C
gFLDProblem_ComputeRHS.C
gFLDProblem_ComputeRadiationIntegrals.C
gFLDProblem_ComputeTemperature.C
gFLDProblem_ComputeTimeStep.C
gFLDProblem_CrossSections.C
gFLDProblem_Dump.C
gFLDProblem_EnforceBoundary.C
gFLDProblem_Evolve.C
gFLDProblem_FInterface.C
gFLDProblem_InitialGuess.C
gFLDProblem_Initialize.C
gFLDProblem_LocRHS.C
gFLDProblem_RadiationSpectrum.C
gFLDProblem_SetupBoundary.C
gFLDProblem_UpdateBoundary.C
gFLDProblem_WriteParameters.C
gFLDProblem_constructor.C
gFLDProblem_destructor.C
gFLDProblem_lsetup.C
gFLDProblem_lsolve.C
gFLDProblem_nlresid.C
gFLDSplit_ComputeRadiationIntegrals.C
gFLDSplit_ComputeTemperature.C
gFLDSplit_ComputeTimeStep.C
gFLDSplit_CrossSections.C
gFLDSplit_Dump.C
gFLDSplit_EnforceBoundary.C
gFLDSplit_Evolve.C
gFLDSplit_FInterface.C
gFLDSplit_InitialGuess.C
gFLDSplit_Initialize.C
gFLDSplit_RadiationSpectrum.C
gFLDSplit_SetupBoundary.C
gFLDSplit_WriteParameters.C
gFLDSplit_constructor.C
gFLDSplit_destructor.C








Adaptive ray tracing

EvolvePhotons.C
RadiativeTransferComputeTimestep.C
RadiativeTransferHealpixRoutines.C
RadiativeTransferInitialize.C
RadiativeTransferLoadBalanceRevert.C
RadiativeTransferMoveLocalPhotons.C
RadiativeTransferPrepare.C
RadiativeTransferReadParameters.C
RadiativeTransferWriteParameters.C
SetSubgridMarker.C
FindSuperSource.C
FindSuperSourceByPosition.C










I/O

OutputAsParticleData.C
OutputCoolingTimeOnly.C
OutputFromEvolveLevel.C
OutputLevelInformation.C
OutputPotentialFieldOnly.C
OutputSmoothedDarkMatterOnly.C
ReadAllData.C
ReadAttr.C
ReadDataHierarchy.C
ReadEvolveRefineFile.C
ReadFile.C
ReadGridFile.C
ReadIntFile.C
ReadMetalCoolingRates.C
ReadMetalCoolingRatios.C
ReadParameterFile.C
ReadPhotonSources.C
ReadRadiationData.C
ReadRadiativeTransferSpectrumTable.C
ReadStarParticleData.C
ReadUnits.C
WriteAllData.C
WriteAllDataCubes.C
WriteConfigure.C
WriteDataCubes.C
WriteDataHierarchy.C
WriteHDF5HierarchyFile.C
WriteMemoryMap.C
WriteParameterFile.C
WritePhotonSources.C
WriteRadiationData.C
WriteStarParticleData.C
WriteStreamData.C
WriteStringAttr.C
WriteTaskMap.C
WriteTracerParticleData.C
WriteUnits.C








Star formation methods

StarParticleAccretion.C
StarParticleAddFeedback.C
StarParticleCountOnly.C
StarParticleDeath.C
StarParticleFinalize.C
StarParticleFindAll.C
StarParticleInitialize.C
StarParticleMergeMBH.C
StarParticleMergeNew.C
StarParticlePopIII_IMFInitialize.C
StarParticleRadTransfer.C
StarParticleSetRefinementLevel.C
StarParticleSubtractAccretedMass.C
StarRoutines.C
Star_Accrete.C
Star_AccreteAngularMomentum.C
Star_ActivateNewStar.C
Star_ApplyFeedbackTrue.C
Star_AssignAccretedAngularMomentum.C
Star_AssignFinalMassFromIMF.C
Star_CalculateFeedbackParameters.C
Star_CalculateMassAccretion.C
Star_ComputePhotonRates.C
Star_DeleteCopyInGridGlobal.C
Star_DeleteParticle.C
Star_DisableParticle.C
Star_FindFeedbackSphere.C
Star_HitEndpoint.C
Star_IsARadiationSource.C
Star_MirrorToParticle.C
Star_MultiplyAccretionRate.C
Star_RemoveMassFromStarAfterFeedback.C
Star_SetFeedbackFlag.C
Star_SphereContained.C
Star_SubtractAccretedMassFromCell.C
cluster_maker.F
star_feedback_pn_snia.F
star_maker1.F
star_maker2.F
star_maker3.F
star_maker4.F
star_maker5.F
star_maker7.F
star_maker8.C
star_maker9.C
star_maker_h2reg.F
sink_maker.C
pop3_color_maker.F
pop3_maker.F
pop3_properties.F








Utilities

cic_deposit.F
cic_flag.F
cic_interp.F
cicinterp.F
smooth.F
smooth_deposit.F
rotate2d.F
rotate3d.F
int_lin3d.F
int_spline.F
interp1d.F
interp2d.F
interp3d.F
interpolate.F
utilities.F
MemoryAllocationRoutines.C
MemoryPoolRoutines.C
SortCompareFunctions.C
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Debugging Enzo with GDB

While it is relatively straightforward to debug enzo in parallel with a
commercial parallel debugger like Totalview or DDT, it is not quite as
straightforward to debug enzo with a free, open source serial debugger like GDB.
This method works well if you do not have access to a supercomputer or cluster
with a commercial parallel debugger installed, if you would like to run and
debug enzo on a small workstation, or if you prefer to use free and open source
software in your programming life.

There are two general approaches for parallel debugging of Enzo within
GDB, running multiple GDB processes that each run Enzo, or attaching
GDB to an existing Enzo process.


I. Running multiple GDB processes that each run Enzo

This option works best when running on a single workstation, or on a
cluster to which you have direct access.  The method works best when
running with only a few processors (as will be seen below).

First, build Enzo with debugging symbols enabled and with compiler
optimizations turned off.  This can be accomplished on most systems by
setting make opt-debug at the command line (see The Enzo Makefile System).

Second, launch a number of xterms using mpirun or mpiexec that
each internally launch GDB on the Enzo executable:

18:16:32 [dreynolds@zeno ~]$  mpirun -np 4 xterm -e gdb ./enzo.exe





This will launch 4 xterms, each of which is running a separate gdb
process, that in turn is set to run Enzo.

Within each of these xterms, enter the remaining command-line
arguments needed to run enzo, e.g.:

(gdb) run -d -r DD0096/DD0096





Once you have hit [enter] in each terminal Enzo will start, with all
process-specific output displayed in it’s own xterm.  If you wish to
set breakpoints, these GDB commands should be entered at the various
GDB prompts prior to issuing the run command.

NOTE: It is possible to insert all of your GDB commands into a GDB
script file, and then have each process run the same script,
eliminating the need to type the commands separately within each
xterm.  To do this, create a file with all of your GDB commands (in
order, one command per line); let’s call this file gdb.in.  Then
when you start mpirun, you can specify this script to the GDB
processes:

18:16:32 [dreynolds@zeno ~]$  mpirun -np 4 xterm -e gdb -x gdb.in ./enzo.exe








II. Attaching GDB to existing Enzo processes




Modify Enzo to allow GDB to attach to a running Enzo process

Open enzo.C, located in the main Enzo source directory, and modify the
beginning of the MAIN_NAME function (the main function where execution
begins) so it looks like the following:

Eint32 MAIN_NAME(Eint32 argc, char *argv[])
  {
  int i;
  // Initialize Communications
  CommunicationInitialize(&argc, &argv);

#define DEBUG_MPI
#ifdef DEBUG_MPI
  if (MyProcessorNumber == ROOT_PROCESSOR) {
    int impi = 0;
    char hostname[256];
    gethostname(hostname, sizeof(hostname));
    printf("PID %d on %s ready for debugger attach\n", getpid(), hostname);
    fflush(stdout);
    while (impi == 0)
      sleep(5);
    }
#endif





All you should need to do is uncomment the #define DEBUG_MPI line.  This
code block will make Enzo print the name of the host its being run on and the
process ID number.  You will need both of these pieces of information when you
try to attach to Enzo with GDB.

Once you’ve modified enzo.C, you will need to rebuild Enzo.  If you haven’t
done so already, you should make sure Enzo is built with debugging symbols and
with compiler optimizations turned off.  This can be accomplished on most
systems by setting make opt-debug at the command line (see
The Enzo Makefile System).




Run Enzo

Now you’re ready to run a test simulation.  This method works best when using
only a few processors, so don’t start a simulation with hundreds of processors
and try to attach to it with GDB unless you know what you’re doing.  If you’re
running Enzo on a cluster, make sure that you can SSH into the compute nodes.
If not then this debugging method will not work.  Start Enzo normally using
mpirun, Enzo should print something like:

humperdinck:GDB_test goldbaum$ mpirun -np 4 ./enzo.exe -d -r DD0096/DD0096
MPI_Init: NumberOfProcessors = 4
PID 34352 on humperdinck.ucolick.org ready for debugger attach





This says that Enzo is running on four cores and has a process ID number of
34352 on the host humperdinck.ucolick.org.




Attach and Debug With GDB

Next, in a new terminal window, you
should ssh into the appropriate host.  If you’re running on your local
workstation there is no need to ssh.  Next, start a GDB session and attach to
the appropriate PID number:

humperdinck:enzo goldbaum$ gdb
GNU gdb 6.3.50-20050815 (Apple version gdb-1515) (Sat Jan 15 08:33:48 UTC 2011)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" for details.
This GDB was configured as "x86_64-apple-darwin".
(gdb) attach 34398





GDB should report a long list of warning messages about code in libraries that
enzo links against that was not compiled with debugging symbols.  It’s safe to
ignore these errors since we will only be debugging the enzo source.  GDB is now
attached to enzo’s process and is probably stuck somewhere in your system’s
implimentation of the sleep() function.  To see the execution stack, tell GDB to
print a stack trace:

0x00007fff8730da6a in __semwait_signal ()
(gdb) backtrace
#0  0x00007fff8730da6a in __semwait_signal ()
#1  0x00007fff8730d8f9 in nanosleep ()
#2  0x00007fff8735a9ac in sleep ()
#3  0x0000000100008cee in main (argc=4, argv=0x7fff5fbfef70) at enzo.C:259
(gdb)





In this example GDB is stuck three levels down from where we want to be inside
enzo.C.  Move up the stack:

(gdb) up 3
#3  0x0000000100008cee in main (argc=4, argv=0x7fff5fbfef70) at enzo.C:259
259      sleep(5);
Current language:  auto; currently c++
(gdb) l
254    char hostname[256];
255    gethostname(hostname, sizeof(hostname));
256    printf("PID %d on %s ready for debugger attach\n", getpid(), hostname);
257    fflush(stdout);
258    while (impi == 0)
259      sleep(5);
260  }
261#endif
262
263
(gdb)





Now GDB is at line 259 of Enzo.C.  To break the infinite loop, you will need to
modify impi so that it is no longer zero:

(gdb) set var impi = 7





At this point you can continue execution by typing continue or c.  If
you want you can also optionally set a breakpoint elsewhere in the enzo source
tree:

(gdb) break EvolveLevel.C:738





This will pause execution right before Enzo enters RebuildHierarchy for the
first time.

That should be enough to get you going.  It’s also possible to start multiple
GDB processes so you can attach to all of the parallel MPI processes.  See the
GDB docs and the openmpi FAQ page for more information.
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Fine Grained Output

When making significant changes to Enzo that have non-local impact, such as adding a new accretion
mechanism for sink particles or face centered magnetic fields, there are many
places to introduce errors.  In order to examine the effect of changes at
specific points in the code, one can use ExtraOutputs.  This run time
parameter makes a call to WriteAllData at various points in EvolveLevel.
For instance, putting:

ExtraOutput = 1
StopCycle = 2
MaximumRefinementLevel = 0





will cause:

ED01_0000
ED01_0001





to be written, along with your regular outputs.  With one level of refinement,
six outputs will be written.  The relation between output number and position is
below.  Up to 10 output points can be specified.

Unraveling what output gets written when can be a challenge.  One technique is
to run with -d, and use the following command:

egrep "^Level||ExtraOutput" output.log





on the output log, which will show what output gets called on which level, and a string indicating
at which point in EvolveLevel it was called.

It should be noted that ExtraOutputs is not written into parameter files on
data dumps, though it can be added to restart parameter files.  This is to prevent absurd amounts of data being written to disk.
By design, this technique outputs many data dumps for each root grid timestep,
following the W cycle.
This has the added disadvantage of making the code slower, as disk access is
rarely the fastest part of any machine.

In the code, overhead is minimized by wrapping the full function signature in a macro.  New calls can be added with:

EXTRA_OUTPUT_MACRO(42, "After My Special Purpose")





where, of course, 42 is replaced by an integer not used by another output, and the string represents the location in the code.  It is often instructive to include this output mechanism in EvolveHierarchy as well, though this has not been done in the current checkin.

Here’s a table of output number vs. position in EvolveLevel.  Please refer to the Enzo Flow Chart, Source Browser
to understand each entry. The non-continuity represents some outputs that will be introduced when
MHDCT is merged, but not relevant for pure hydro.







	Index
	Position in EvolveLevel


	1
	Before time loop


	2
	After SolveHydroEquations grid loop


	25
	After SetBoundaryConditions


	3
	Before UpdateFromFinerGrids


	4
	After UpdateFromFinerGrids


	6
	After the time loop
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Adding a new parameter to Enzo

If your parameter is only used for a problem initialization, this
page is not relevant for you. You should just read it in during
ProblemInitialize.C where Problem is replaced by the name of
the problem type.

If you’re extending Enzo for any reason, you’ll probably need to
add a new switch or parameter to the code. Currently, this page
describes the simplest, most brute force method. There are four
files you’ll need to edit to make this happen.


	global_data.h holds all the global data. It’s included in
almost all Enzo files. Your parameter should be added like this:

EXTERN int MyInt;
EXTERN float MyFloat;





EXTERN is a macro that either maps to extern if USE_STORAGE is
defined, or nothing if USE_STORAGE is not defined. USE_STORAGE is
defined in enzo.C before the inclusion of global_data.h, and
undefined after.



	SetDefaultGlobalValues.C sets the default global values. Set
your value here.



	ReadParameterFile.C reads the parameter file. In this routine,
each line is read from the file and is compared to the given
parameters with sscanf(). Your line should look like this:

ret += sscanf(line, "MyFloat      = %"FSYM, &MyFloat);
ret += sscanf(line, "MyInt        = %"ISYM, &MyInteger);





and should be inserted somewhere in the loop where line is
relevant. Note that ISYM and FSYM are the generalized integer and
float I/O macro, which exist to take care of the dynamic hijacking
of ‘float’.
See this page for more information: Variable precision in Enzo.
The ret += controls whether the line has been read, or if Enzo
should issue a warning about the line. Note also that sscanf() is
neutral to the amount of consecutive whitespace in the format
string argument.



	WriteParameterFile.C writes the restart parameter file.
Somewhere before the end of the routine, you should add something
that looks like

fprintf(fptr, "MyFloat       = %"GSYM"\n", MyFloat);
fprintf(fptr, "MyInt         = %"ISYM"\n", MyInt);





Note the use of quotes here and in the previous code snippet. This
is correct.





For testing purposes you can verify that your new parameter is being correctly read in by
adding a line like this at the bottom of ReadParameterFile.C:

  fprintf(stdout, "MyFloat %f MyInt %d\n", MyFloat, MyInt);
  return SUCCESS;
}
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How to add a new baryon field

If you wish to add a new field to Enzo, there are a few files that you
will need to modify:


	Add the field to typedefs.h in the field_type data structure. To do this, look for the last field in the list before FieldUndefined. Give your problem a new number and increment FieldUndefined. For example, let’s say you wanted to add a new field called SodiumDensity. If the last field in field_types is FieldUndefined = 96, you would add your field as



SodiumDensity = 96,
FieldUndefined = 97;






	Next, you need to add your field to Grid_InitializeUniformGrid.C. At the top of the file you need to declare an int to hold the number which is used to reference the field, for example NaNum for the SodiumDensity example. Further down, you need to add your field to the FieldType list. After the other fields have been added, add the line



FieldType[NaNum    = NumberOfBaryonFields++] = SodiumDensity;





In theory, you could add the fields and allocate the fields in your problem initializer code (as some test problems currently in Enzo do), but it is cleaner and simpler to have your problem initializer call InitializeUniformGrid before doing the setup for your problem type. For more details, see
Adding a new Test Problem..


	Finally, you need to modify the initializer of problem types using your new field to make sure that the field is written out. Add the lines



char* SodiumName = "Sodium_Density";
...
DataLabel[i++] = SodiumName;





after the other DataLabels are set. Note that you need to set the Data Labels in the same order that the fields were added in Grid_InitializeUniformGrid.C or the fields will be written incorrectly.


	You can access the field in your problem initializer or elsewhere using the FindField function. To get the field number, you would use



int NaNum;
NaNum = FindField(SodiumDensity, FieldType, NumberOfBaryonFields);





Now you can access the field as BaryonField[NaNum]. For example, to set the value to 0 everywhere,

for (int i = 0; i < size; i++)
   BaryonField[NaNum][i] = 0.0;





For a more detailed discussion of how data in BaryonFields is accessed, see
Accessing Data in BaryonField.


Conservation

For the purpose of advection and interpolation, Enzo assumes that all fields are densities unless told otherwise. If your field is not a density field, you will need to make some adjustments to make sure that the field is properly conserved. To do this, you can modify the macros in typedefs.h under FieldTypeIsDensity. Non-density fields will be multiplied by density prior to flux correction and converted back afterwards. This process will make the field be conserved in the same way as density fields. To see how Enzo decides whether a field needs to be multiplied by density, take a look at the file MakeFieldConservative.C. The actual manipulation is done in the flux correction and interpolation routines, and should not need to be modified.
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Variable precision in Enzo

In order to provide some global control over variable precision,
Enzo uses a set of macros that control how the code treats integer
and floating-point precision by overriding the float and int data
types, and by introducing the FLOAT macro. This is a major sticking
point for new users to the code, and this page is an attempt to
clarify the issue as much as possible.


Floating-point precision

There are two different kinds of floating-point quantities in Enzo, those that
explicitly deal with positional information (grid edges/locations, cell sizes,
particle positions, and so on), and those that deal with non-position
information (baryon density, temperature, velocity, etc.) Any variables that
deal with position information should be declared as the FLOAT data type. For
example:

FLOAT xpos, ypos, zpos;





A quantity that deals with non-positional information would be
declared using the float data type:

float cell_HI_density, cell_H2I_density, cell_temperature;





The actual precision of float and FLOAT are controlled by the
Makefile system (see Obtaining and Building Enzo.) To set the
non-positional precision to 64-bit (double), you would issue this
command:

make precision-64





before compiling the code. Similarly, to set the positional
precision to 64-bit (double), you would issue this command:

make particles-64





The allowable values for non-positional precision are 32 and 64
bits, and for positional precision are 32, 64, and 128 bits. It is
not recommended that you use particles-128 unless you need more
than 30 or so levels of AMR, since long double arithmetic generally
requires software libraries and can be very slow. Also note that
the 128-bit precision code is not terribly stable, and only works
on some systems (and with some sets of compilers). Use this with
extreme caution.

Mixing ``float`` and ``FLOAT``: One can mix the float and FLOAT data
types, but some care is required since the two are not necessarily
the same precision. Compilers will generally promote the variables
to the higher precision of the two, but this is not always true.
The Enzo developers have chosen to make the assumption that the
precision of FLOAT is always the same as, or greater than, the
precision of float. So, when precision is critical or when mixing
float and FLOAT, we recommend that you always promote all variables
to FLOAT. Regardless, it is a good idea to check that your code is
producing sensible results.




Integer precision

There is only one commonly-used type of integer in Enzo, which is
int. This is controlled by the the integers- makefile command. For
example,

make integers-64





would force all ints to be 64-bit integers (long int). The
allowable integer values are 32 and 64 bit. In general, the only
time one would need 64-bit ints is if you are using more than
231 particles, since signed integers are used for the
particle index numbers, and chaos will ensue if you have duplicate
(or, worse, negative) particle indices.




Precision macros and printf/scanf

In order to keep the printf family of commands happy, Enzo uses
several macros. ISYM is used for integers, FSYM and ESYM for float, and
PSYM and GSYM for FLOAT (the latter of each pair outputs floats in
exponential notation). Additionally, when writing FLOAT data to a
file that will be read back in by Enzo (such as to the parameter or
hierarchy file), it is wise to use GOUTSYM. In a printf or scanf
statement, this macro will be replaced with the actual string
literal statement.

An example of this usage macro in a printf statement to write out a
float is:

printf("Hello there, your float value is %"FSYM".\n", some_float);





and to read in a set of three position coordinates using scanf out
of a string named line:

sscanf(line,"PartPos  = %"PSYM" %"PSYM" %"PSYM, &XPOS, &YPOS, &ZPOS);





Note the somewhat counterintuitive use of quotation marks after the
3rd PSYM. For a large number of examples of how to use these
macros, please refer to the files ReadParameterFile.C and
WriteParameterFile.C in the Enzo source code.




The Fortran-C++ interface

It is critical to make sure that if you are interfacing Fortran
and C/C++ code, the variable precision agrees between the two
languages. Compilers do not attempt to ensure that calls from C/C++
to Fortran make any sense, so the user is manifestly on their own.
To this end, when writing Fortran code you must ensure that your
variables are declared with the correct type.  Unlike Enzo’s C/C++
routines that overwrite the default float and int
types with their single/double precision equivalents, Enzo’s Fortran
routines do not overwrite the basic data types.  Hence, we have
created unique type identifiers for the Fortran routines that map to
Enzo’s float, FLOAT and int types, as specified below:







	Enzo C/C++
	Enzo F/F90


	float
	R_PREC


	int
	INTG_PREC


	FLOAT
	P_PREC





In addition, Fortran allows additional data types for both logical
and complex variables.  In Enzo, the precision of these variables
may be chosen to match Enzo’s int and float values from C/C++
using the F/F90 types LOGIC_PREC and CMPLX_PREC respectively.

Moreover, unlike C/C++, hard-coded constants in Fortran routines
default to single-precision values.  This can be especially
troublesome when calling a Fortran subroutine or function with
constants as their inputs, or when writing complicated formulas using
constants that must be of higher precision.  To this end, we have
defined four type-modifier Fortran suffixes, that can be used to
declare constants of differing precision:







	Variable Type
	Suffix


	R_PREC
	RKIND


	INTG_PREC
	IKIND


	P_PREC
	PKIND


	LOGIC_PREC
	LKIND





Note: since a complex number in Fortran is defined through a pair of
real numbers, to create a complex constant of type CMPLX_PREC you
would use the RKIND suffix on both components.

For example, the type specifiers and constant suffixes could be used
in the following ways:

c     Declarations
      R_PREC     third, tenth
      INTG_PREC  one
      P_PREC     fifth
      CMPLX_PREC two_i
      LOGIC_PREC test

c     Calculations
      third = 1._RKIND / 3._RKIND
      tenth = 1.e-1_RKIND
      one   = 1_IKIND
      fifth = real(1, PKIND) / 5._PKIND
      two_i = (0._RKIND, 2._RKIND)
      test  = .true._LKIND





All of these type definitions are supplied in the file
fortran_types.def and should be included within a Fortran routine
within the scope of the function, after any implicit none
declaration, and before declaring any variables, e.g.

      subroutine foo(a)
         implicit none
#include "fortran_types.def"
         R_PREC a





The Enzo build system will preprocess this file to include
fortran_types.def at the specified location in the file, prior to
compilation.  Moreover, the spacing in this file is usable using
either fixed-source-form or free-source-form Fortran files.

A word of warning: mismatching the data types between C/C++ and
Fortran codes can cause misalignment in the data, and will often
result in nonsense values that will break Enzo elsewhere in the
code. This can be particularly tricky to debug if the values are
not used immediately after they are modified!




If you need more details…

If you need more detailed information on this particular subject,
there is no substitute for looking at the source code. All of these
macros are defined in the Enzo source code file
macros_and_parameters.h. Just look for this comment:

/* Precision-dependent definitions */





There are many examples of using the IO macros in
ReadParameterFile.C and WriteParameterFile.C.

Also, please note that this set of macros may be replaced with a
more robust set of macros in future versions.
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Adding new refinement criteria


	Add any new parameters you might need.  (See Adding a new parameter to Enzo.)

	Write your code to flag the cells

	Call your method.



The first point has been discussed elsewhere.


Writing your code to flag cells

Your code needs to do a couple things:


	Be named FlagCellsToBeRefinedByXXXXXX, where XXXXXX is your
criterion.

	Increment FlaggingField[i]

	Count and return the number of flaggged cells.

	Return -1 on error.



Your code to do the cell flagging can be a grid method.

A minimal code should look like this:

int grid::FlagCellsToBeRefinedByDensityOverTwelve(){

  int NumberOfFlaggedCells = 0;
  for( int i = 0; i< GridDimension[0]*GridDimension[1]*GridDimension[2]; i++ ){
     if( BaryonField[0][i] > 12 ){
       FlaggingField[i] ++;
       NumberOfFlaggedCells ++;
     }
  }
  return NumberOfFlaggedCells;

}








Call your method

Edit the file Grid_SetFlaggingField.C In this routine, there’s a
loop over the CellFlaggingMethod array. In this loop, you’ll see
code like this:

  /* ==== METHOD 47: By Density over 12 ==== */

case 47:

  NumberOfFlaggedCells = this->FlagCellsToBeRefinedByDensityOverTwelve();
  if (NumberOfFlaggedCells < 0) {
    fprintf(stderr, "Error in grid->FlagCellsToBeRefinedByDensityOverTwelve.\n");
    return FAIL;
  }
  break;





So we need to add a few things.


	Add a new case statement to the switch construct.

	Set NumberOfFlaggedCells via the method described above.

	Don’t forget the break; statement.

	Check for errors.
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Auto adjusting refine region


Problem

In nested grid simulations, massive particles from outside the finest nested
initial grid can migrate into the refine region. This may cause artifical
collapses in halos whose potential is dominated by one or more massive
particle. To avoid this in the past, the refine region was set to the
Lagrangian volume of the halos of interest at the final redshift.




Solution

On every top-level timestep, we can search for these massive particles inside
the current refine region and adjust the refine region to exclude these
particles. The covering volume of the highest resolution particles may have
been sheared and have an arbitrary shape. We adjust the refine region to have
faces just inside of the innermost, relative to the center of the refine
region, massive particles. Below is an illustration of this new region.

[image: optimal refine region with particles]
Here is the logic that we have taken to adjust the refine region because it is
not a trivial min/max of the positions of the massive particles. If we were to
take the maximum distance of the highest resolution particles from the refine
region center, we would obtain a minimum covering volume that contains all high
resolution particles, which is not desired. We will incrementally shrink the
region by a cell width on the level with the finest nested initial grid.


	Find the mass of the highest resolution particle, Mmin.



	Create a list of any particles with a mass > Mmin inside the current
refine region. This list is unique on each processor.



	Because we will incrementally reduce the refine region by cell
widths, it is convenient to convert the massive particle positions to
integers in units of these cell widths.



	Loop while any massive particles are contained in the refine region.



	Originally the code looped over each face of the refine region to
search for massive particles, but we found that this favored the
first faces (x-dimension) in the loop. So we have randomized which
face we will evaluate.



	Search for any particles existing in the outermost slab (1 cell
deep on the whole face) on the region face in question. If any
massive particles exist in this slab, reduce the refine region by
one cell width, e.g. -dy on the right face of the y-dimension.



	Obtain the min/max of the left/right faces of the refine region
from all processors.



	Every 6 face loops, check if we have removed any particles
(communication required).


If we haven’t and there still exists massive particles inside
the region, there must be particles farther inside (greater than
a cell width from the refine region boundary), we must reduce
the refine region on a face to search for these particles. This
is where the randomization comes into play, so we don’t favor
the x-faces. This could be improved by making an educated guess
on which face to move inwards by searching for particles near
the boundary. However, this might be difficult and
time-consuming.








Below in the attachments (region.mov) is an animation showing the
above process.
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Accessing Data in BaryonField

For performance reasons, Enzo uses Fortran source to do all the
important work. Because of this, it doesn’t use the standard C/C++
data structure for the 3D BaryonField array, which stores all the
Eulerian data.

BaryonField is stored as a one dimensional array. Typically C/C++
data is stored in row major order. ENZO DATA IS STORED IN COLUMN
MAJOR ORDER because of its Fortran underpinnings.

To map between one and three dimensions, in column major order, use
the following:

OneDindex = i + nx*j + nx*ny*k





in Enzo grid member functions, this can be done like this:

index = i + GridDimension[0]*(j + GridDimension[1]*k);





It should also be mentioned that it is always important to access
data in ‘stride 1’ order. That means accessing data in the order it
is stored in memory. So to set all BaryonFields to the number
12345.6:

int index;
for(int field=0;field<NumberOfBaryonFields;field++)
for(int k=0;k<GridDimension[2]; k++)
  for(int j=0;j<GridDimension[1]; j++)
    for(int i=0;i<GridDimension[0]; i++){
      index = i + GridDimension[0]*(j + GridDimension[1]*k);
      BaryonField[field][index] = 12345.6;
    }





This loops over the ghost zones as well as the active zones. To
loop over only active zones, use GridStartIndex and GridEndIndex.
Note that this loop must include GridEndIndex

int index;
for(int field=0;field<NumberOfBaryonFields;field++)
for(int k=GridStartIndex[2];k<=GridEndIndex[2]; k++)
  for(int j=GridStartIndex[1];j<=GridEndIndex[1]; j++)
    for(int i=GridStartIndex[0];i<=GridEndIndex[0]; i++){
      index = i + GridDimension[0]*(j + GridDimension[1]*k);
      BaryonField[field][index] = 12345.6;
    }
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Grid Field Arrays

Field arrays are convenient ways (within code linked against the
Enzo code base – including within Enzo itself!) to access grid
data such as the baryon fields, or particle lists. They can also be
used to get pre-defined derived fields, such as temperature. They
are intended to be used by solvers, initializers, and analysis
routines. The hope is provide a clean way for classes other than
the grid to get to grid data, and to help make the current code
base more modular.


Class Description

The array class is pretty simple: just enough to represent an
N-dimensional grid, without any spatial information. Here is the
heart of it, from EnzoArray.h:

template<typename T>
class EnzoArray
{
public:

  EnzoArray(int rank, int *dims, int *start, int *end,
        FLOAT *cell_size=NULL, int derived=FALSE){

...

  int Rank;                        // number of dimensions
  int Dimension[MAX_DIMENSION];    // total dimensions of all grids
  int StartIndex[MAX_DIMENSION];   // starting index of the active region
                                   //   (zero based)
  int EndIndex[MAX_DIMENSION];     // stoping index of the active region
                                   //   (zero based)
  FLOAT CellWidth[MAX_DIMENSION];

  T *Array;

  // used for velocities and positions
  T *Vector[MAX_NUMBER_OF_PARTICLE_ATTRIBUTES];

...
};

#define EnzoArrayFLOAT EnzoArray<FLOAT>
#define EnzoArrayFloat EnzoArray<float>
#define EnzoArrayInt   EnzoArray<int>





The array classes are really a single template, but the macros at
the bottom of the header file will hide that from you.


Array vs. Vector

In the above code block, you’ll notice two pointers: T \*Array; and
T \*Vector. Here are the rules that these attributes follow: Only
one of these will be used, and which one is used depends on the
type of data you try to access. Namely, field data, such as
density, will be pointed to by Array, and vector data, such as
velocities or particle positions, will be pointed to by Vector.




Destructor (What Gets Deleted)

When the destructor is called, Array and Vector get deleted
only if derived is TRUE. This is to keep the usage (declare and
delete) similar for both derived and underived data. We really
don’t want to delete the density field on accident.






Access Methods

There are six accessor methods declared in
Grid.h, two per data type
(float, int, and FLOAT).

EnzoArrayInt *CreateFieldArrayInt(field_type field);
EnzoArrayInt *CreateFieldArrayInt(char *field_name);

EnzoArrayFloat *CreateFieldArrayFloat(field_type field);
EnzoArrayFloat *CreateFieldArrayFloat(char *field_name);

EnzoArrayFLOAT *CreateFieldArrayFLOAT(field_type field);
EnzoArrayFLOAT *CreateFieldArrayFLOAT(char *field_name);





These methods are defined in
Grid_CreateFieldArray.C.
Basically, they allocate a new
EnzoArray, fill in the dimensions, attach the relevant pointers,
and hand it back to. All you need to do is delete the return
object.




Field Numbers and Names

The arguments to are either a field number, defined in
typedefs.h, or the
string version of the same. The string versions are defined in a
long array, named field_map in
Grid_CreateFieldArray.C.
This means you can access something as

EnzoArrayFloat *density_array = mygrid->CreateFieldArrayFloat(Density);





or

EnzoArrayFloat *density_array = mygrid->CreateFieldArrayFloat("Density");





There are some fields which have names that are the same as grid
attributes, like ParticlePosition. Rather than have a huge
namespace conflict, these have field numbers prefixed with a “g”,
e.g., gParticlePosition. The string called is still just
“ParticlePosition”, like

EnzoArrayFloat *ppos = mygrid->CreateFieldArrayFloat(gParticlePosition);





or

EnzoArrayFloat *ppos = mygrid->CreateFieldArrayFloat("ParticlePosition");





The important part of the map is that it knows the data type of the
fields, which you need to know, so you can call the right method.
This is really pretty simple, since just about everything returned
is a float. For a complete list of the (hopefully current) fields,
see the section Field_List_Reference. For the best reference,
check in typedefs.h,
and Grid_CreateFieldArray.C.




Using the Methods

Here’s a somewhat long-winded example of how to use the arrays.
First, here’s function to create a non-uniform grid

grid *Linear3DGrid(){
  // Create a new 3D grid
  float dens = M_PI, total_energy = 0.5, internal_energy = 0.0;
  float vel[3];
  int dims[3];
  FLOAT left[3], right[3];

  grid *lineargrid = new grid;
  int i, j, k, rank = 3;
  int index;

  for (i = 0; i < rank; i++) {
    dims[i] = 134;
    left[i] = 0.0;
    right[i] = 1.0;
    vel[i] = (i+1) * 0.125;
  }

  NumberOfParticleAttributes = 0;
  lineargrid->PrepareGrid(3, dims,
                          left, right, 2);

  int result = lineargrid->InitializeUniformGrid(dens, total_energy, internal_energy, vel);
  assert(result != FAIL);

  EnzoArrayFloat *dens_field = lineargrid->CreateFieldArrayFloat("Density");

  for (k = 3; k <= 130; k++) {
    for (j = 3; j <= 130; j++) {
      index =  k*(134)*(134) +
        j*(134) + 3;
      for (i = 3; i <= 130; i++, index++) {
        dens_field->Array[index] = (float)(i + 1000*j + 1000000*k);
      }
    }
  }

  delete dens_field;

  return lineargrid;
}





Notice how this function uses CreateFieldArrayFloat to set the
values of the density array.

Now, here’s a program that creates a uniform grid, and looks at
some of the attributes:

Eint32 main(Eint32 argc, char *argv[]) {

  CommunicationInitialize(&argc, &argv);

  grid *agrid = Linear3DGrid();

  EnzoArrayFloat *dens = agrid->CreateFieldArrayFloat(Density);

  Eint32 index = 7 + 8*134 + 9*134*134;

  printf("density rank = %"ISYM"\n", dens->Rank);
  printf("density dim[0]  = %"ISYM"\n", dens->Dimension[0]);
  printf("density start[0]  = %"ISYM"\n", dens->StartIndex[0]);
  printf("density end[0]  = %"ISYM"\n", dens->EndIndex[0], 130);
  printf("density field[7 + 8*134 + 9*134*134] = %"FSYM"\n", dens->Array[index]);

  delete dens;
  delete agrid;

  // End the overall test suite
  CommunicationFinalize();

  return 0;
}





This is a complete program,
field_array_example.C;
what this snippet lacks is the fairly
long list of header files that need to be included. You can compile
this by calling make field_array_example.exe in source directory.




Field List Reference

The following table is a partial list of the fields in Enzo.  The Field Type ID is defined in the typedef.h file.










	Field Type ID
	Field Number
	Field Name
	Data Type
	Array or Vector




	0
	Density
	“Density”
	float
	Array


	1
	TotalEnergy
	“TotalEnergy”
	float
	Array


	2
	InternalEnergy
	“InternalEnergy”
	float
	Array


	3
	Pressure
	“Pressure”
	float
	Array


	4
	Velocity1
	“Velocity1”
	float
	Array


	5
	Velocity2
	“Velocity2”
	float
	Array


	6
	Velocity3
	“Velocity3”
	float
	Array


	7
	ElectronDensity
	“ElectronDensity”
	float
	Array


	8
	HIDensity
	“HIDensity”
	float
	Array


	9
	HIIDensity
	“HIIDensity”
	float
	Array


	10
	HeIDensity
	“HeIDensity”
	float
	Array


	11
	HeIIDensity
	“HeIIDensity”
	float
	Array


	12
	HeIIIDensity
	“HeIIIDensity”
	float
	Array


	13
	HMDensity
	“HMDensity”
	float
	Array


	14
	H2IDensity
	“H2IDensity”
	float
	Array


	15
	H2IIDensity
	“H2IIDensity”
	float
	Array


	16
	DIDensity
	“DIDensity”
	float
	Array


	17
	DIIDensity
	“DIIDensity”
	float
	Array


	18
	HDIDensity
	“HDIDensity”
	float
	Array


	19
	SNColour
	
	
	


	20
	Metallicity
	“Metallicity”
	float
	Array


	21
	ExtraType0
	“ExtraType0”
	float
	Array


	22
	ExtraType1
	“ExtraType1”
	float
	Array


	30
	GravPotential
	“GravPotential”
	float
	Array


	31
	Acceleration0
	“Acceleration0”
	float
	Array


	32
	Acceleration1
	“Acceleration1”
	float
	Array


	33
	Acceleration2
	“Acceleration2”
	float
	Array


	37
	gParticlePosition
	“ParticlePosition”
	FLOAT
	Vector


	38
	gParticleVelocity
	“ParticleVelocity”
	float
	Vector


	39
	gParticleMass
	“ParticleMass”
	float
	Array


	40
	gParticleAcceleration
	“ParticleAcceleration”
	float
	Vector


	41
	gParticleNumber
	“ParticleNumber”
	int
	Array


	42
	gParticleType
	“ParticleType”
	int
	Array


	43
	gParticleAttribute
	“ParticleAttribute”
	float
	Vector


	44
	gPotentialField
	“PotentialField”
	float
	Array


	45
	gAccelerationField
	“AccelerationField”
	float
	Vector


	46
	gGravitatingMassField
	“GravitatingMassField”
	float
	Array


	47
	gFlaggingField
	“FlaggingField”
	int
	Array


	48
	gVelocity
	“Velocity”
	float
	Vector
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Adding a new Local Operator.

If you’re adding new physics to Enzo, chances are you’ll need to
add some kind of new operator.

This page is only to describe new physics that is


	Operator split from everything else

	Completely local, so depends on the field value and their
derivatives in a cell.

	Doesn’t depend on the grid’s position in the hierarchy.



Global operators, such as solution to Poisson’s equation, are much
more significant undertakings, and should be discussed with the
Enzo development team.


	Read all the supporting documents found in
Enzo Primary References.  This is not a simple
piece of software.



It’s really in your best interest to understand the basic
algorithms before trying to write code to extend it. It’s much more
complex than Gadget or Zeus, and much much easier to break.


	Open EvolveHierarchy.C



	Read it, and understand the structure. The flowcharts can help,
they can be found in Enzo Flow Chart, Source Browser.



	Add a parameter to drive your code in Adding a new parameter to Enzo



	Write your new routine. This can either be a grid member function
(old style) or a non-member function that accesses the Enzo data
using the Grid Field Arrays objects (prefered method.)



	Locate this block of code:

      if (Grids[grid1]->GridData->SolveHydroEquations(LevelCycleCount[level],
         NumberOfSubgrids[grid1], SubgridFluxesEstimate[grid1], level) == FAIL) {
        fprintf(stderr, "Error in grid->SolveHydroEquations.\n");
        return FAIL;
      }

      JBPERF_STOP("evolve-level-13"); // SolveHydroEquations()

//      fprintf(stderr, "%"ISYM": Called Hydro\n", MyProcessorNumber);

      /* Solve the cooling and species rate equations. */









This is in the primary grid loop on this level.


	Insert your new grid operation right before the last comment. It
should look something like this:

      if (Grids[grid1]->GridData->SolveHydroEquations(LevelCycleCount[level],
         NumberOfSubgrids[grid1], SubgridFluxesEstimate[grid1], level) == FAIL) {
        fprintf(stderr, "Error in grid->SolveHydroEquations.\n");
        return FAIL;
      }

      JBPERF_STOP("evolve-level-13"); // SolveHydroEquations()

//      fprintf(stderr, "%"ISYM": Called Hydro\n", MyProcessorNumber);

      /* Solve the cooling and species rate equations. */

      if( YourFlag ){
        if( Grids[grid1]->GridData->YourRoutine(YourArguments) == FAIL ){
          fprintf(stderr,"Error in grid->YourRoutine\n");
          return FAIL;
        }









If your code isn’t a grid member, you can omit the
Grids[grid1]->GridData-> part.





          

      

      

    


    
         Copyright 2012, Enzo Developers.
      Last updated on Mar 09, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Enzo 2.5 documentation 

          	Developer’s Guide 
 
      

    


    
      
          
            
  
Adding a new Test Problem.

This is the best place to start your Enzo Development Career. Even
if you’re not interested in actually writing a new problem
generator, in this page I’ll discuss the basic Enzo data structures
and programming patterns.

One deficiency in this tutorial is the lack of Particles. This is
not an oversight, but due to the fact that the author of the
article doesn’t really use particles, as he’s not a cosmologist.
These will be added in the future, but particles are really not
that big of a deal when it comes to the general Enzo data
structures. All the information herein is still essential.


Overview

Essentially, you need two write files: MyProblemInitialize.C and
Grid_MyProblemInitializeGrid.C. We’ll be discussing these two
files. MyProblemInitialize is the basic setup code that sets up
parameters and the hierarchy, and MyProblemInitializeGrid is a
member function of the grid class, and actually allocates and
assigns data. There are several pitfalls to setting up these files,
so read these pages carefully.

We strongly recommend reading everything that proceeds this page on
the Getting Started with Enzo page and the page about version control
and regression testing, Introduction to Enzo Modification.

Lastly, please give your problem a reasonable name. I’ll be using
MyProblem throughout this tutorial. Please change this to something
that reflects the problem you’re installing.




Adding Setup Files and Defining a New Problem Type

Please follow the general Enzo naming convention and call your
routines MyProblemInitialize and store it in MyProblemInitialize.C,
and MyProblemInitializeGrid and store it in
Grid_MyProblemInitializeGrid.C

You’ll need to install your code in three places.


	
	Make.config.objects

	is the file that lists all the source file objects needed to build Enzo. Put

MyProblemInitialize.o\
Grid_MyProblemInitializeGrid.o\





somewhere in the list of objects. If you want to make things really
clean, you can add your own variable to the Makefile and have it
driven by a command line switch, but this isn’t necessary.







	
	Grid.h. You’ll need to put

	MyProblemInitializeGrid in this the grid class definition. Put it
with the rest of the *InitializeGrid routines.







	
	InitializeNew.C. Put

	MyProblemInitialize in InitializeNew. At the end of the large block
of *Initialize, take the next unused ProblemType number and
install your code. It should look something like this:

// 61) Protostellar Collapse
if (ProblemType == 61)
  ret = ProtostellarCollapseInitialize(fptr, Outfptr, TopGrid, MetaData);

// 62) My New Problem
if ( ProblemType == 62 )
  ret = MyProblemInitialize(fptr, Outfptr, TopGrid, MetaData);

// Insert new problem intializer here...

if (ret == INT_UNDEFINED) {
  fprintf(stderr, "Problem Type %"ISYM" undefined.\n", ProblemType);
  return FAIL;
}













To call your problem generator, make sure ProblemType = 62 is in
your parameter file. (Or, if 62 is taken, whatever the next unused
value is.)

The return value ret is used to check for errors and invalid values
of ProblemType. The function signature will be discussed in the
next section.

Also, don’t forget to put the proto type at the top:

int MyProblemInitialize(FILE *fptr, FILE *Outfptr,
                                   HierarchyEntry &TopGrid,
                                   TopGridData &MetaData);





We will revisit InitializeNew at the end. For almost all problems,
this will be all you do for these three files.




MyProblemInitialize

The primary drive routine is called MyProblemInitialize. It
basically sets up some global values, problem specific values, and
the hierarchy before calling MyProblemInitializeGrid.


Function Signature

The function signature of MyProblemInitialize is fairly rigid. It
should look exactly like the prototype you installed in
InitializeNew. There are 4 arguments that you’ll almost certainly
need, and one additional argument that only rare problems will
need. You won’t likely have any need to add any other arguments. In
order, they are:


	
	FILE *fptr This is the pointer to the parameter file argument to

	Enzo. It’s opened and closed in InitializeNew You can read
parameters if you like, see below.







	
	FILE *Outfptr This is the output pointer, a file called “amr.out.”

	This file contains the derived details of your problem setup for
your record. There is no necessary output for this, it’s for the
users convenience.







	
	HierarchyEntry &TopGrid This is the pointer to the top of the

	Hierarchy Linked List. For details of the linked list,
Getting Around the Hierarchy: Linked Lists in Enzo. For most problem types, it
points to the undivided root grid, which is a grid the full size
of the top grid, where you will be initializing your data. For
problems that are too large for the entire root grid to be
allocated, we use the ParallelRootGridIO functionality, to be
discussed later. (Please read everything between here and there.)







	
	TopGridData &MetaData This is the structure that contains the meta

	data describing the Top Grid. Things like boundary condition,
problem domain size, rank, and dimension are stored here.
See TopGridData.h for a complete list of the contents.









If you want to write a problem with Dirichlet boundary conditions,
for instance jet inflow, you will need to add a fifth argument to
the function (and, of course, it’s called in InitializeNew). This is
the external boundary, ExternalBoundary &Exterior. This is the
External Boundary object, which you will need to deal with.  We will
not be discussing this here. If you need to be
doing a problem with boundary conditions other than the big 3
(periodic, reflecting, outflow) then we recommend you read the
entirety of this tutorial, then follow what’s done with the
DoubleMach problem, which is problem type 4. You will also need to
examine Grid_SetExternalBoundaryValues.C




Necessary Headers

The essential header files for MyProblemInitialize are the
following:

#include <stdio.h>
#include <string.h>
#include "macros_and_parameters.h"
#include "typedefs.h"
#include "global_data.h"
#include "Fluxes.h"
#include "GridList.h"
#include "ExternalBoundary.h"
#include "Grid.h"
#include "Hierarchy.h"
#include "TopGridData.h"





These should be in this order, to ensure proper definitions across
different header files. You should be familiar with the two
standard headers <stdio.h> and <string.h>

In brief, these are:


	
	macros_and_parameters.h The standard set of macros. This takes

	care of the float promotion so its inclusion is
ABSOLUTELY ESSENTIAL







	
	typedefs.h This takes

	care of enumerates for parameters like the hydro method.







	
	global_data.h There

	are a lot of global parameters in Enzo. This houses them.







	
	Fluxes.h Definition of the

	flux object. Not necessary for your objects, but I think its
necessary for the later







	
	GridList.h I don’t think

	this is necessary, but it’s usually included.







	
	ExternalBoundary.h This defines the external boundary object. Even

	if you’re not including the external boundary, it’s
necessary for the following headers.







	
	Grid.h This defines the grid

	class, which you’ll definitely need.







	Hierarchy.h This defines the Hierarchy Entry linked list.



	TopGridData.h This defines the meta data object.





More information can be found in Header files in Enzo.




Initializing Baryon Fields

At some point in your problem type setup, it is essential that the arrays
to hold BaryonField data are initialized. To do this, you must tell Enzo
what baryon fields exist in the problem, allocate the BaryonField arrays,
and label the fields so that they can be written out.

The easiest way to set up and allocate the fields is through a call to
InitializeUniformGrid. This function, found in Grid_InitializeUniformGrid.C,
takes care of setting up the fields and allocating the arrays and
initializes the gas to a uniform state. You will still need to add
labels for output as described below.

The call to InitializeUniformGrid can simply be added in MyProblemInitialize.C
before the call to the problem initializer as follows:

if (TopGrid.GridData->InitializeUniformGrid(MyProblemUniformDensity,
                                      MyProblemUniformTotalEnergy,
                                      MyProblemUniformTotalEnergy,
                                      MyProblemUniformVelocity,
                                      MyProblemUniformBField) == FAIL) {
                                         ENZO_FAIL("Error in InitializeUniformGrid.");
                                         }





Note that it is in theory possible to set up the BaryonFields manually in your test
problem without the call to InitializeUniformGrid. This is done in some test
problems in the code base, but is discouraged as a call to InitializeUniformGrid
is cleaner, simpler, and is already implemented. If for some reason you do need
to do the setup and allocation manually, look at Grid_InitializeUniformGrid.C
to see how it is done. The field information must be done on every grid on every
processor, so it is essential that you do this step before exiting on remote grids.




Setting up Data Labels

There are two arrays that need to be filled in MyProblemInitialize.
One of them is ABSOLUTELY ESSENTIAL for the functioning of the
code. These are DataLabel and DataUnits. Both of these are arrays
of strings that will be used to label the HDF5 output files. Each
element of the array corresponds to an element of the BaryonField
array and MUST be defined in the same order as fields are entered in
InitializeUniformGrid or elsewhere in your problem initializer.
There is not a mechanism to ensure that you do this right, so don’t
screw it up.


DataLabel

This is the actual name of the field in the HDF5 file. Messing this
up is asking for trouble. If you’re not using chemistry, you’ll
want something that looks like this. If you change the actual
names, you guarantee that an analysis tool somewhere will break, so
don’t do it. See
CosmologySimulationInitialize.C for
a more complete list, including extra chemical species.

char *DensName = "Density";
char *TEName   = "TotalEnergy";
char *GEName   = "GasEnergy";
char *Vel1Name = "x-velocity";
char *Vel2Name = "y-velocity";
char *Vel3Name = "z-velocity";
i = 0;
DataLabel[i++] = DensName;
DataLabel[i++] = TEName;
if (DualEnergyFormalism)
  DataLabel[i++] = GEName;
DataLabel[i++] = Vel1Name;
DataLabel[i++] = Vel2Name;
DataLabel[i++] = Vel3Name;








DataUnits

The units really don’t matter very much. They’re usually set to
NULL






Reading from the Parameter File

You may want to read in problem specific parameters. PLEASE do not
put problem specific parameters in the main parameter file reader.

The usual pattern reads each line of the parameter file, and tries
to match each line with a parameter. This allows the parameter file
to be independent of of order. The typical pattern looks like
this:

float MyVelocity, MyDensity;
char line[MAX_LINE_LENGTH];
while (fgets(line, MAX_LINE_LENGTH, fptr) != NULL) {
 ret = 0;

  /* read parameters */

  ret += sscanf(line, "MyProblemVelocity      = %"FSYM,
                &MyVelocity);
  ret += sscanf(line, "MyProblemDensity      = %"FSYM,
                &MyDensity);
  if (ret == 0 && strstr(line, "=") && strstr(line, "MyProblem") &&
      line[0] != '#' && MyProcessorNumber == ROOT_PROCESSOR)
    fprintf(stderr,
       "warning: the following parameter line was not interpreted:\n%s\n",
            line);
}





If you’re not familiar with these functions,
here is a good list of standard C functions [http://www.cppreference.com/all_c_functions.html].

The last line checks for errors in parameters that start with
MyProblem. Everything involving this routine should be prepended
with MyProblem. In the file ReadParameterFile.C, the parameter file
is read and any lines not recognized are thrown as errors; this is
the section identified with

\* check to see if the line belongs to one of the test problems \*/.





You must add your prefix (in this
case, MyProblem) to the list of test problem prefixes considered in
this section:

if (strstr(line, "MyProblem")           ) ret++;





or else it will register as an error.




Calling the Grid Initializer: Unigrid

For a small, unigrid problem, the problem initializer is called
using the standard Enzo function call procedure.

if( TopGrid.GridData->MyProblemInitializeGrid(MyVelocity, MyDensity) == FAIL ){
  fprintf(stderr,"MyProblemInitialize: Error in MyProblemInitializeGrid\n");
  return FAIL;





TopGrid is the HierarchyEntry that starts the hierarchy linked
list. It’s member GridData is a pointer to the actual grid object
that you will be modifying.

We will be discussing AMR problems, and large problems that require
parallel startup later.






MyProblemInitializeGrid

MyProblemInitializeGrid is the member function of the grid class.
As a member function, it can access the private data, most
importantly BaryonField. BaryonField is an array of pointers that
stores the actual data that the simulator is interested in.

float *BaryonField[MAX_NUMBER_OF_BARYON_FIELDS];





When setting up a new test problem, make sure to only set field values
on Grids which live on the current processor. In Enzo, each Grid is a
‘real Grid’ on one processor and a ‘remote Grid’, storing only metadata,
on other processors. Therefore, your problem initializer should include


if (ProcessorNumber != MyProcessorNumber)
  return SUCCESS;








before setting field values.

Finally, set up your test problem by setting the BaryonField values.
See the page on Baryon Field Access for details.
Accessing Data in BaryonField


Initializing AMR problems

For problems that you want to initialize in an AMR fashion, all the previous
steps apply. However, instead of simply calling the problem initializer on the
Top Grid, one must now initialize a HierarchyEntry linked list (of which TopGrid
is the head) and call the problem initializer on each subgrid. There are several
ways to do this, depending on the complexity of the code. One first needs to
understand the HierarchyEntry linked list. This Page gives a tutorial on the
linked lists, and links to examples in the code.




Using ParallelRootGridIO

Main article: Using Parallel Root Grid IO

ParallelRootGridIO is a fairly complex piece of code. If you absolutely
must do this in the code, it is recommended that you read the description
of the inner workings of ParallelRootGridIO and then cloning what’s done
for the CosmologyInitialize routines.
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Using Parallel Root Grid IO

First, read Parallel Root Grid IO.  Come
back when you’re finished.

Parallel root grid IO (PRGIO) is necessary when initializing problems
that don’t fit in memory on one machine.  A PRGIO problem generator
needs to function in two passes.  First it needs to set up the basic
problem (see Calling the Grid Initializer: Unigrid) without allocating any data.
This will create a temporary root grid that covers the entire domain.
Then CommunicationPartitionGrid splits this grid into several
pieces.  Usually there is one partition per MPI process unless the
parameter NumberOfRootGridTilesPerDimensionPerProcessor is greater
than 1.  The temporary root grid is then deleted, leaving only the
empty level-0 grids.  Finally each processor re-initializes the newly
created subgrids, this time allocating the data only when the grid
belongs to it, i.e. MyProcessorNumber == ProcessorNumber.  Both
passes are done in InitializeNew.C.

For an example, see either the


	CosmologySimulationInitialize and CosmologySimulationReInitialize

	TurbulenceSimulationInitialize and TurbulenceSimulationReInitialize



routines in InitializeNew.C.
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MHD Methods

Dedner cleans [image: \nabla \cdot B] with a wave-like hyperbolic cleaner, and is
easy to use.

CT preserves [image: \nabla \cdot B] to machine precision, but is slightly harder to use.









	quantity
	MHD-RK
	MHD-CT/MHD_Li




	Reconstruction
	PLM
	PLM


	Splitting
	Unsplit, Runge Kutta
	Split (strang)


	[image: \nabla \cdot B]
	Few Percent
	Machine Noise


	Difficulty
	Easy
	Two pitfalls











Cosmology

See the note at the bottom of the page for cosmology details.  The method papers
are now out of date.




Use of Dedner

The Dedner method (HydroMethod = 4) is relatively straight forward.
The three magnetic components are stored in BaryonField, with the relevant
indices found through IdentifyFieldQuantities.  Since they hyperbolic
cleaner will largely eliminate any divergence, initialization an injection of
magnetic energy is straight forward.

AMR is done in the same manner as other fluid quantities in Enzo.

The method is described in Dedner et al. 2002 JCP 175, 2, 645-673 [http://adsabs.harvard.edu/abs/2002JCoPh.175..645D]

The implementation and test problems can be found in Wang & Abel 2009, ApJ 696 96 [http://adsabs.harvard.edu/abs/2009ApJ...696...96W].




Use of MHD-CT

Use of MHD-CT (HydroMethod = 6) is somewhat complicated by the staggered nature of the magnetic field.  This allows the
field to be updated by the curl of an electric field, thus preserving
[image: \nabla \cdot B = 0] to machine precision, but requires some additional
machinery to ensure consistency of the data structure.  In principle,
Constrained Transport can be used with a variety of MHD methods, but presently
it only works with the second-order scheme described by Li, Li, and Cen.  For
this reason, a distinction is made between the hydro solver, MHD_Li as it is
referred to in the code, and CT.

The magnetic field is represented by two data structures.


	The cell centered magnetic field is accessed the same manner as done in
HydroMethod==4.  However, this is a read only quantitiy.  Periodically
it is replaced by the spatial average of the face centered magnetic field.

	The face centered magnetic field is stored in MagneticField.  This is a
staggered structure, and is divergence free.  If a modification need to be made
to the magnetic field when using MHDCT (such as injection by a source or
initialization), the modification should be done in a divergence free manner.
More details below.



The primary references are:

CT algorithms:
Balsara & Spicer 1999, JCP, 149, 2, 270-292 [http://adsabs.harvard.edu/abs/1999JCoPh.149..270B]

Gardiner & Stone 2005, JCP, 205, 2, 509-539 [http://adsabs.harvard.edu/abs/2005JCoPh.205..509G]

AMR Algorithm:
Balsara 2001 JCP, 174, 2, 614-648 [http://adsabs.harvard.edu/abs/2001JCoPh.174..614B]

Implementation and test problems:
Collins, Xu, Norman, Li & Li, ApJS 186, 2, 308 [http://adsabs.harvard.edu/abs/2010ApJS..186..308C].




Controlling MHD in the code

Within the code, there are several flags to control use of magnetic fields.

UseMHD is true when either MHD module is on.

UseMHDCT  controls use of the face- and
edge- centered fields.  While it is associated with HydroMethod=6, in
it only controlls the face- and edge-centered fields, so future HydroMethods
can also use these fields.


HydroMethod==MHD_RK controls things that only pertain


to that hydro method.  This is either control of the solver itself, or the
fields that pertain exclusively to that solver
(e.g. BaryonField[PhiNum], the Phi field is exclusive to the Dedner method.)

HydroMethod==6 or HydroMethod==MHD_Li typically only deals with control of the MHD_Li solver.  Currently this only triggers the call to the solver.  Things dealing with the data structures should be controlled with UseMHDCT

Wait, what?  UseMHD is usually what you want to use in your code.  UseMHDCT is for
MagneticField or ElectricField.  HydroMethod==MHD_RK when you need
the Phi field, which you only really need for initialization.

Implementation details for MHDCT can be found in MHDCT Details




Cosmology

As of January 2015, the cosmology has been modified slightly in MHDCT.  This was
done in order to rectify the treatment of cosmology in the bulk of the code as
well as the output fields, and to rectify a missing [image: 1/a] in the pressure
when using MHDCT (it probably did not impact your run.)  For clarity we briefly
summarize the differences here.  The major difference between MHD_RK and
MHD_Li is now the treatment of the dilution of the field due to cosmological
expansion.  These terms are the [image: \dot{a}/a] in the method papers.

In both methods, the magnetic field most often seen in the code and in output is
the comoving magnetic field.  The induction equation for the comoving magnetic
field has an expansion term, [image: \dot{a}/2 B].  For MHD_RK, this is
integrated in Grid_MHDSourceTerms.C, by way
of direct finite difference.  For MHDCT, the induction is formulated with a
semi-comoving field, [image: B_{semi} = B_{comoving} \sqrt{a}].  In this
formulation there is no explicit expansion source term.  This is done in order
to keep the divergence zero, and is the result of the manner in which
projection from fine to coarse grids happens in the code.   In order to keep the
code representation consistent throughout the bulk of Enzo, this change of
fields from comoving to semi-comoving is done in
Grid_MHD_UpdateMagneticField.C.   It should be noted that in the Bryan et al
2014, the total pressure is stated as [image: p^* = p + B^2/2a] (Equation 6 in
that paper.)  This is no
longer valid, now the total pressure should be [image: p^* = p + B^2/2] for both
solvers in both the code and in analysis.

It should also be noted that ElectricField is semi-comoving.

Care should be taken with simulations using cosmology and MHDCT that were
run before Fall 2015.
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MHDCT Details

This section gives a detailed account of incorporating MHDCT into your
simulation.  Please read the overview in MHD Methods first.  Also,
read the implementation method paper, Collins et al 2010.


Parameter Compatibility

Due to the consistency requirements of MHDCT, several parameter combinations can
and will fail in hilarious ways.  Defaults have been
selected to give the best performance and the consistent results.  The minimum
set of parameters to be enabled in your new parameter file are

NumberOfGhostZones = 5

HydroMethod = 6

Other parameters must always be set, and sometimes are set differently in other
parameter files:

FluxCorrection = 1

CorrectParentBoundaryFluxes = 1




Initialization

If you have an initializer that you wish to add MHDCT to, several things
need to be done:

1.) Set Labels and Units Define the labels in the primary problem initializer, e. g. MHDBlastInitialize.C.
Use the function MHDCTSetupFieldLabels();

2.) Note: if your main initializer uses a call to InitializeUniformGrid, you can skip steps 2 and 3.
In the grid initializer, e.g. Grid_MHDBlastInitializeGrid.C, add
BaryonField pointers for the centered magnetic field.  Code should look like

if( UseMHD ){
  FieldType[NumberOfBaryonFields++] = Bfield1;
  FieldType[NumberOfBaryonFields++] = Bfield2;
  FieldType[NumberOfBaryonFields++] = Bfield3;
}
if( HydroMethod == MHD_RK ){
  FieldType[NumberOfBaryonFields++] = PhiField;
}





This is the same as Dedner simulation.  Old versions of the code used a variable CenteredB, which was redundant and cumbersome.

3.) Allocate the appropriate fields
Ensure your code calls this->AllocateGrids(); rather than
BaryonField[field] = new float[size].

4.) Fill the Fields  This can be either very straight forward, or very
difficult depending on your problem.  Here we’ll present three cases.  Note that
the very most important thing is that the field is numerically divergence
free.

4a) Uniform Magnetic Fields If you have a uniform magnetic field defined by UniformField[3], you can initialize them like this:

for ( int field=0; field < 3; field++ ){
  for ( int i=0; i<MagneticSize[field]; i++ ){
    MagneticField[field][i] = UniformField[field];
  }

}





Here, MagneticSize[] is defined in grid::AllocateGrids.  In some initializers this is done within the i,j,k loop
over BaryonField.  This is also acceptable, the missing face will be taken care of by the boundary set on the root grid.

4b) Simple Analytic Function If you have a function, Function, that is numerically
divergence free but a function of space,  you can loop over the grids
zone-by-zone in the following manner.  NOTE that your function is probably not
like this  Many functions are analytically divergence free, but numerically
they are not.  Piecewise constant functions are possible candidates, anything
involving sine is not.

for ( int field=0; field < 3; field++ ){
  for ( k=0; k<MagneticDims[field][2]; k++ ){
    for( j=0; j<MagneticDims[field][1]; j++ ){
      for( i=0; i<MagneticDims[field][0]; i++ ){
        index = i + MagneticDims[field][0]*(j + MagneticDims[field][1] * k);
        MagneticField[ field][ index] = Function(i,j,k);
      }
    }
  }
}





4c) Anything Else For any function that is more complex than a Heaviside
function, you will need to write your initial magnetic field as the curl of a
vector potential, [image: B = \nabla \times A].    The curl operator,
grid::MHD_Curl, will allow you to take any field you like to initialize the
field.  Due to data structure limitations, we use the ElectricField to store
the vector potential in this case.  Such code might look like this:

for ( int field=0; field < 3; field++ ){
    for ( k=0; k<ElectricDims[field][2]; k++ ){
      for( j=0; j<ElectricDims[field][1]; j++ ){
        for( i=0; i<ElectricDims[field][0]; i++ ){
          index = i + ElectricDims[field][0]*(j + ElectricDims[field][1] * k);
          ElectricField[ field ][ index] = Function(field,i,j,k);
        }
      }
    }
  }
  this->MHD_Curl(GridStartIndex, GridEndIndex, 0)





where Function is anything you like.

5.) Center the magnetic field  The final step is to fill the centered field, BaryonField[B1Num] (etc) from MagneticField.  Call this
function once you’ve filled MagneticField.

this->CenterMagneticField();





6.) Add to the Energy Finally you need to add the magnetic energy to the total
energy.  There are several ways to accomplish this.  Something like this is
sufficient:

int DensNum, GENum, Vel1Num, Vel2Num, Vel3Num, TENum, B1Num, B2Num, B3Num;
this->IdentifyPhysicalQuantities(DensNum, GENum, Vel1Num, Vel2Num, Vel3Num,
                                 TENum, B1Num, B2Num, B3Num);
for( i=0; i<size; i++ ){
  BaryonField[ TENum][i] += 0.5*(BaryonField[B1Num][i]*BaryonField[B1Num][i]+
                                 BaryonField[B2Num][i]*BaryonField[B2Num][i]+
                                 BaryonField[B3Num][i]*BaryonField[B3Num][i])/BaryonField[ DensNum][i];
}





7.) If you refine on initialization Some problems refine on initialization.
If you have such an initializer, quite often the grid initializer is called on
successive levels, then projected from fine to coarse.  If your routine does
this, AND you have a simple (i.e. you didn’t call MHD_Curl) initializer,
you can force the magnetic field to be projected by setting

MHD_ProjectB=TRUE;
MHD_ProjectE=FALSE;





before the projection is done.  It is imperative that it gets set back after
the projection with

MHD_ProjectB=FALSE;
MHD_ProjectE=TRUE;





or the code will fail horribly.

If you refine on initialization and have a complex initializer you will need
to project the electric field, then take the curl over the whole grid.  I have
never done this, so writing documentation would be speculative at best.  Please
feel free to contact David Collins through the Enzo mailing list in such a case, and I can both help make it happen and write the document.




Data Structures

Enzo uses two representations of the magnetic field, one located at the center
of the zone and one at the face.  The centered field is stored in
BaryonField, and will use identical code to the field with the Dedner
solver.
The staggered magnetic field is stored in MagneticField, and electric field, ElectricField, is
centered on the zone edges.  MagneticField, being stored on the faces of the
zones, has one additional point along each component.  For instance, if a grid had dimensions [image: n_x, n_y, n_z] then


[image: B_x] will have dimensions [image: n_x+1, n_y, n_z].  ElectricField has additional points transverse to the direction


of the component, so [image: E_x] has dimensions [image: n_x, n_y+1, n_z+1].
There are several helper variables, such as MagneticDims[3][3],
ElectricDims[3][3], MagneticSize[3], and ElectricSize[3] to describe
these variables.

The centered magnetic field will be updated by grid::CenterMagneticField()
used strategically throughout the code.

Note that old versions of the code incorporate an additional data structure,
CenteredB, to store the cell centered field.  This has been removed, and
should be replaced by BaryonField[B1Num], etc.

For MHDCT, the magnetic field stored in BaryonField
should be considered a read-only quantity– it is
replaced with a centered spatial average of MagneticField as necessary by
the routine CenterMagneticField.
MagneticField should only be modified in a manner that is definitely
divergence free.  For more general initialization, one can use the function MHD_Curl
for fields that can be represented by a vector potential.




Interpolation

Interpolation must be done in a divergence-free manner.  Balsara
2001 describes this method.  Interpolation is done on all three components of
MagneticField at once.  This method only allows RefineBy = 2.

One challenge of this method is that newly interpolated regions require
knowledge of any fine-grid data at the same level that may share a face.  Thus
instead of simply interpolating from parent grids, then copying from old fine
grids, MHDCT must use the magnetic information from the old fine grids.  This is
done by first computing interpolation derivatives (done in Grid_MHD_CID.C
and stored in DyBx, etc) then communicating this information to the relevant
parent grids (done in Grid_SendOldFineGrids.C)  This makes MHD-CT
interpolation a 3 grid interaction (Parent, Child, Old Child) rather than a 2
body interaction (Parent and Child) as all other fields.




Projection and Flux Correction

As with other quantities, magnetic fields need to be projected to parents, then
coarse zones next to projected zones need to be corrected to ensure
conservation.  As described by Balsara 2001, this involves area weighted
projection of face centered field on the fine grid, then a correction using the
electric field.  In order to simplify the logic and machinery, Enzo MHD-CT
actually projects the ElectricField, then takes the curl over the new
magnetic field.  This is formally equivalent to projection plus flux correction,
but doesn’t have as many cases to check and grid interactions to worry about.
This is done in EvolveLevel by the routine Grid_MHD_UpdateMagneticField




Future Work (or, “Projects for Interested Students”)

Most neighbor searching throughout Enzo is done with the Fast Neighbor Locator,
which uses a chaining mesh to identify neighbors.  This is not done for the
communication done in SendOldFineGrids, but should be.

Additionally, both SendOldFineGrids and the electric field projection need
to be updated to work with the 3 phase non-blocking communication

In principle, the CT machinery can be used in conjunction with the MHD-RK
machinery.  Interested students can contact dcollins for further instruction.

Presently MHD-CT needs additional layers of ghost zones over the base hydro.  I
believe that I can reduce this by communicating the electric field, which will
improve memory overhead.  Again, interested parties can contact me for details.

Multi-species needs to be tested.

The mhd interpolation routine, mhd_interpolate.F, could use to be re-factored.  The interested
student can feel free to contact David Collins.







          

      

      

    


    
         Copyright 2012, Enzo Developers.
      Last updated on Mar 09, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Enzo 2.5 documentation 

          	Developer’s Guide 
 
      

    


    
      
          
            
  
Doing a Release

Periodically, the Enzo community creates an “official” release of the Enzo
codebase.  While running off of the Enzo mercurial repository is in general
quite stable, doing official releases has other benefits.  By doing releases, we
acoomplish the following goals:


	Periodically recognize the breadth and depth of the code contributions by our
community.

	Offer a “stable” platform with known properties to test against for people who
are not heavily involved in Enzo development.

	Announce to the wider computational astrophysics community about ongoing
developments in the Enzo codebase.



Generally, releases happen via the contributions of a release manager and the
author of the release e-mail.

The release manager is a senior member of the community whose responsibility is
to ensure open pull requests are integrated into the code before the release,
select a release e-mail author, and ensure that the checklist in this document
is carried out.

The author of the release e-mail is generally someone who has made significant
recent contributions to the code.  This person may be at any seniority level,
although in the past several releases (as of Enzo 2.4) this person has generally
been either a postdoc or a grad student.

To do the release, the following tasks must be completed:


	Update the README file in the root of the repository to reflect the
current version. Also look over the document to correct any changes to
repository locations, mailing list or social media addresses, or new
contributors.



	Update the CHANGELOG to include a new entry for the release.  The
demarcation between new features, enhancements, or bugfixes is up to the
judgement of the release manager. Use the following format:

== Version 2.x ==
_Release Date: 1/19/2038

* New Feature: A frobulator was added to the code to improve frobulation.
               (PR xxx)
* Enhancement: The moving mesh module now supports 11-dimensional meshes.
               (PR YYY)
* Bugfix: The retro-encabulator no longer instantiates sentient AIs.
          (PR ZZZ)







	Update the conf.py file in the documentation to include the new version
number.



	Ensure that the answer tests are passing on the automated build machine.



	Once all pull requests slated for the release have been merged, tag the final
commit as the “enzo-2.x” release changeset.
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Enzo Primary References

The Enzo method paper is not yet complete. However, there are several papers
that describe the numerical methods used in Enzo, and this documentation
contains a brief outline of the essential physics in Enzo, in
Enzo Algorithms.  These papers should be considered suitable for
citations for Enzo in general:


	Simulating X-Ray Clusters with Adaptive Mesh Refinement [http://adsabs.harvard.edu/abs/1997ASPC..123..363B]
by Bryan and Norman. In “Computational Astrophysics; 12th
Kingston Meeting on Theoretical Astrophysics;” proceedings of
meeting held in Halifax; Nova Scotia; Canada October 17-19; 1996,
ASP Conference Series #123, edited by D. A. Clarke and M. J. West.,
p. 363.
Bibtex entry [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1997ASPC..123..363B&data_type=BIBTEX&db_key=AST&nocookieset=1]

	A Hybrid AMR Application for Cosmology and Astrophysics [http://adsabs.harvard.edu/abs/1997astro.ph.10187B]
by Bryan and Norman. In “Workshop on Structured Adaptive Mesh
Refinement Grid Methods”, Mar. 1997, ed. N. Chrisochoides.
Bibtex entry [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1997astro.ph.10187B&data_type=BIBTEX&db_key=PRE&nocookieset=1]

	Cosmological Adaptive Mesh Refinement [http://adsabs.harvard.edu/abs/1999ASSL..240...19N]
by Norman and Bryan. In “Numerical Astrophysics : Proceedings
of the International Conference on Numerical Astrophysics 1998
(NAP98),” held at the National Olympic Memorial Youth Center,
Tokyo, Japan, March 10-13, 1998. Edited by Shoken M. Miyama, Kohji
Tomisaka, and Tomoyuki Hanawa. Boston, Mass. : Kluwer Academic,
1999. (Astrophysics and space science library ; v. 240), p.19
Bibtex entry [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1999ASSL..240...19N&data_type=BIBTEX&db_key=AST&nocookieset=1]

	Introducing Enzo, an AMR Cosmology Application [http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:astro-ph/0403044]
by O’Shea et al. In “Adaptive Mesh Refinement - Theory and
Applications,” Eds. T. Plewa, T. Linde & V. G. Weirs, Springer
Lecture Notes in Computational Science and Engineering, 2004.
Bibtex entry [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004astro.ph..3044O&data_type=BIBTEX&db_key=PRE&nocookieset=1]

	Simulating Cosmological Evolution with Enzo [http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0705.1556]
by Norman et al. In “Petascale Computing: Algorithms and
Applications,” Ed. D. Bader, CRC Press LLC, 2007.
Bibtex entry [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2007arXiv0705.1556N&data_type=BIBTEX&db_key=PRE&nocookieset=1]



The primary hydrodynamics methods are PPM and ZEUS, as described in
the following two papers:


	The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations [http://adsabs.harvard.edu/abs/1984JCoPh..54..174C] by Colella, P.; Woodward, Paul R.
Journal of Computational Physics (ISSN 0021-9991), vol. 54, April 1984,
p. 174-201.  Bibtex entry [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1984JCoPh..54..174C&data_type=BIBTEX&db_key=AST&nocookieset=1]

	ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in
two space dimensions. I - The hydrodynamic algorithms and tests. [http://adsabs.harvard.edu/abs/1992ApJS...80..753S] by Stone and Norman,
Astrophysical Journal Supplement Series (ISSN 0067-0049), vol. 80, no. 2,
June 1992, p. 753-790.
Bibtex Entry [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1992ApJS...80..753S&data_type=BIBTEX&db_key=AST&nocookieset=1]



The extension of PPM to cosmology can be found here:


	A piecewise parabolic method for cosmological hydrodynamics. [http://adsabs.harvard.edu/abs/1995CoPhC..89..149B] by Bryan et al. Comput.
Phys. Commun., Vol. 89, No. 1 - 3, p. 149 - 168 Bibtex entry [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1995CoPhC..89..149B&data_type=BIBTEX&db_key=AST&nocookieset=1]



The AMR method used in Enzo can be found here:


	Local adaptive mesh refinement for shock hydrodynamics [http://adsabs.harvard.edu/abs/1989JCoPh..82...64B]   by Berger, M. J. and
Colella, P. Journal of Computational Physics (ISSN 0021-9991), vol. 82, May
1989, p. 64-84.  Bibtex Entry [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1989JCoPh..82...64B&data_type=BIBTEX&db_key=PHY&nocookieset=1].



The paper describing the Dedner MHD can be found here:



	Magnetohydrodynamic Simulations of Disk Galaxy Formation: The Magnetization of the Cold and Warm Medium [http://adsabs.harvard.edu/abs/2009ApJ...696...96W],
by Wang, P.; Abel, T.  The Astrophysical Journal, Volume 696, Issue 1, pp. 96-109 (2009)
Bibtex Entry [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2009ApJ...696...96W&data_type=BIBTEX&db_key=AST&nocookieset=1].






The paper describing the ray-tracing algorithm (MORAY) can be found here:



	ENZO+MORAY: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing [http://adsabs.harvard.edu/abs/2011MNRAS.414.3458W],
Wise, J.; Abel, T.  Monthly Notices of the Royal Astronomical Society, Volume 414, Issue 4, pp.  3458-3491.
Bibtex Entry [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2011MNRAS.414.3458W&data_type=BIBTEX&db_key=AST&nocookieset=1].






The YT paper can be found here:


	yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data [http://adsabs.harvard.edu/abs/2011ApJS..192....9T], by Turk, M. J.;
Smith, B. D.; Oishi, J. S.; Skory, S.; Skillman, S. W.; Abel, T.; and
Norman, M. L. The Astrophysical Journal Supplement, Volume 192, Issue 1,
article id. 9 (2011)
Bibtex Entry [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2011ApJS..192....9T&data_type=BIBTEX&db_key=AST&nocookieset=1].
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Enzo Algorithms

This section provides a very short overview of the algorithms used by
the Enzo code. References to texts and journal articles providing a
more complete discussion of the algorithms are included at the end of
this page for the interested reader, or you can go to
Enzo Primary References.  for a more current list. As of this
writing (October 2008), a formal Enzo method paper has not been
published, but is in preparation. Much of the text and images on this
page have been taken from one of the Laboratory for Computational Astrophysics [http://lca.ucsd.edu] contributions to the
2003 University of Chicago AMR conference [http://flash.uchicago.edu/amr2003] [1] Enzo is written in a mixture of C++ and
Fortran 77. High-level functions and data structures are implemented
in C++ and computationally intensive lower-level functions are written
in Fortran.  Enzo is parallelized using the MPI [http://www.mcs.anl.gov/research/projects/mpi/] message-passing
library and uses the HDF5 [http://www.hdfgroup.org/HDF5/] data format to write out data and restart
files in a platform-independent format.


Adaptive Mesh Refinement

Enzo allows hydrodynamics in 1, 2 and 3 dimensions using the structured
adaptive mesh refinement (SAMR) technique developed by Berger and Collela
[2]. The code allows arbitrary integer ratios of parent and child grid
resolution and mesh refinement based on a variety of criteria, including baryon
and dark matter overdensity or slope, the existence of shocks, Jeans length,
and cell cooling time. The code can also have fixed static nested subgrids,
allowing higher initial resolution in a subvolume of the simulation. Refinement
can occur anywhere within the simulation volume or in a user-specified
subvolume.

The AMR grid patches are the primary data structure in Enzo. Each individual
patch is treated as an individual object, and can contain both field variables
and particle data. Individual patches are organized into a dynamic distributed
AMR mesh hierarchy using arrays of linked lists to pointers to grid objects.
The code uses a simple dynamic load-balancing scheme to distribute the workload
within each level of the AMR hierarchy evenly across all processors.

Although each processor stores the entire distributed AMR hierarchy, not all
processors contain all grid data. A grid is a real grid on a particular
processor if its data is allocated to that processor, and a ghost grid if its
data is allocated on a different processor.  Each grid is a real grid on
exactly one processor, and a ghost grid on all others.  When communication is
necessary, MPI is used to transfer the mesh or particle data between
processors. The tree structure of a small illustrative 2D AMR hierachy - six
total grids in a three level hierarchy distributed across two processors - is
shown on the left in Figure 1.


[image: AMR hierarchy]
Figure 1. Real and ghost grids in a hierarchy; real and ghost zones
in a grid.



Each data field on a real grid is an array of zones with dimensionality equal
to that of the simulation (typically 3D in cosmological structure formation).
Zones are partitioned into a core block of real zones and a surrounding layer
of ghost zones. Real zones are used to store the data field values, and ghost
zones are used to temporarily store values from surrounding areas, ie,
neighboring grids, parent grids or external boundary conditions, when required
for updating real zones.  The ghost zone layer is three zones deep in order to
accomodate the computational stencil in the hydrodynamics solver (See below),
as indicated in the right panel in Figure 1. These ghost zones can lead to
significant computational and storage overhead, especially for the smaller grid
patches that are typically found in the deeper levels of an AMR grid hierarchy.

For more information on Enzo implementation and data structures, see references
[3], [4], [5], and [6].




Dark Matter Dynamics

The dynamics of large-scale structures are dominated by dark matter, which
accounts for approximately 85% of the matter in the universe but can only
influence baryons via gravitational interaction.  There are many other
astrophysical situations where gravitational physics is important as well, such
as galaxy collisions, where the stars in the two galaxies tend to interact in a
collisionless way.

Enzo uses the Particle-Mesh N-body method to calculate collisionless particle
dynamics. This method follows trajectories of a representative sample of
individual particles and is much more efficient than a direct solution of the
Boltzmann equation in most astrophysical situations.  The particle trajectories
are controlled by a simple set of coupled equations (for simplicity, we omit
cosmological terms):


[image: \frac{d\mathbf{x}_p}{dt} = \mathbf{v}_p]


and


[image: \frac{d\mathbf{v}_p}{dt} = -\nabla \phi]


Where xp and vp are the particle position and velocity
vectors, respectively, and the term on the right-hand side of the second
equation is the gravitational force term. The solution to this can be found by
solving the elliptic Poisson’s equation:


[image: \nabla^2 \phi = 4 \pi G \rho]


where [image: \rho] is the density of both the collisional fluid
(baryon gas) and the collisionless fluid (particles).

These equations are finite-differenced and for simplicity are solved with the
same timestep as the equations of hydrodynamics.  The dark matter particles are
sampled onto the grids using the triangular-shaped cloud (TSC) interpolation
technique to form a spatially discretized density field (analogous to the
baryon densities used to calculate the equations of hydrodynamics) and the
elliptical equation is solved using FFTs on the triply periodic root grid and
multigrid relaxation on the subgrids.  Once the forces have been computed on
the mesh, they are interpolated to the particle positions where they are used
to update their velocities.




Hydrodynamics

The primary hydrodynamic method used in Enzo is based on the piecewise
parabolic method (PPM) of Woodward & Colella [7] which has been
significantly modified for the study of cosmology.  The modifications
and several tests are described in much more detail in [8],
and we recommend that the interested reader look there.

PPM is a higher-order-accurate version of Godunov’s method with
third-order-accurate piecewise parabolic monotolic interpolation and a
nonlinear Riemann solver for shock capturing. It does an excellent job
capturing strong shocks and outflows. Multidimensional schemes are built up by
directional splitting, and produce a method that is formally
second-order-accurate in space and time and explicitly conserves energy,
momentum and mass flux. The conservation laws for fluid mass, momentum and
energy density are written in comoving coordinates for a
Friedman-Robertson-Walker spacetime. Both the conservation laws and Riemann
solver are modified to include gravity, which is calculated as discussed above.

There are many situations in astrophysics, such as the bulk hypersonic motion
of gas, where the kinetic energy of a fluid can dominate its internal energy by
many orders of magnitude. In these situations, limitations on machine precision
can cause significant inaccuracy in the calculation of pressures and
temperatures in the baryon gas. In order to address this issues, Enzo solves
both the internal gas energy equation and the total energy equation everywhere
on each grid, at all times. This dual energy formalism ensures that the
method yields the correct entropy jump at strong shocks and also yields
accurate pressures and temperatures in cosmological hypersonic flows. See
reference [8] for more information about the dual energy formalism.

As a check on our primary hydrodynamic method, we also include an
implementation of the hydro algorithm used in the Zeus astrophysical
code [9], [10]. This staggered grid, finite difference method
uses artificial viscosity as a shock-capturing technique and is
formally first-order-accurate when using variable timesteps (as is
common in structure formation simulations), and is not the preferred
method in the Enzo code.




Cooling/Heating

The cooling and heating of gas is extremely important in astrophysical
situations. To this extent, two radiative cooling models and several uniform
ultraviolet background models have been implemented in an easily extensible
framework.

The simpler of the two radiative cooling models assumes that all species in the
baryonic gas are in equilibrium and calculates cooling rates directly from a
cooling curve assuming Z = 0.3 Zo.  The second routine, developed by
Abel, Zhang, Anninos & Norman [11], assumes that the gas has primordial
abundances (ie, a gas which is composed of hydrogen and helium, and unpolluted
by metals), and solves a reaction network of 28 equations which includes
collisional and radiative processes for 9 seperate species (H, H+,
He, He+, He++, H-, H2+,
H2 and e-). In order to increase the speed of the
calculation, this method takes the reactions with the shortest time scales
(those involving H- and H2+) and decouples
them from the rest of the reaction network and imposes equilibrium
concentrations, which is highly accurate for cosmological processes. See
[11] and [12] for more information.

The vast majority of the volume of the present-day universe is occupied by
low-density gas which has been ionized by ultraviolet radiation from quasars,
stars and other sources. This low density gas, collectively referred to as the
Lyman-&alpha; Forest because it is primarily observed as a dense collection of
absorption lines in spectra from distant quasars (highly luminous extragalactic
objects), is useful because it can be used to determine several cosmological
parameters and also as a tool for studying the formation and evolution of
structure in the universe (see [13] for more information). The spectrum of
the ultraviolet radiation background plays an important part in determining the
ionization properties of the Lyman-&alpha; forest, so it is very important to
model this correctly. To this end, we have implemented several models for
uniform ultraviolet background radiation based upon the models of Haardt &
Madau [14].




Star Formation and Feedback

One of the most important processes when studying the formation and evolution
of galaxies (and to a lesser extent, groups and clusters of galaxies and the
gas surrounding them) is the formation and feedback of stars. We use a
heuristic prescription similar to that of Cen & Ostriker [15] to convert
gas which is rapidly cooling and increasing in density into star particles
which represent an ensemble of stars. These particles then evolve
collisionlessly while returning metals and thermal energy back into the gas in
which they formed via hot, metal-enriched winds.




Parallelization in Enzo

Enzo uses a grid-based parallelization scheme for load balancing.  The root
grid is partitioned up into N pieces (where N is the number of processors), and
each processor is given a piece of the root grid, which it keeps for the
duration of the simulation run.  Subgrids are treated as independent objects
and are distributed to the processors such that each level of grids is
load-balanced across all processors.  Boundary fluxes between neighboring grid
patches and parent and children grids are passed back and forth using MPI
commands.

The one portion of the code that is parallelized differently is the root grid
gravity solver. As discussed above, the gravitational potential on the root
grid is solved using a fourier transform method, which requires its own
message-passing routines.  The three-dimensional total density field (composed
of the dark matter plus baryon density on the root grid) is decomposed into
two-dimensional slabs (requiring one set of messages), which are then fourier
transformed.  The slabs are then transposed along another axis (requiring a
second set of messages to be passed) and transformed again, and a third set of
messages is required in order to obtain the original block decomposition. This
is unavoidable when using a fourier transform scheme, and as a result the speed
of the root grid gravity solver is very sensitive to the speed of the
communication network on the platform that Enzo is being run on.




Initial Conditions Generator

A somewhat detailed description of the method Enzo uses to create
initial conditions can be downloaded as a postscript or PDF document.  To
summarize: Dark matter particles and baryon densities are laid out on
a uniform Cartesian grid. Given a user-specified power spectrum P(k),
the linear density fluctuation field is calculated at some initial
time (typically z = 100 for high-resolution/small box simulations) by
using P(k) to obtain the density fluctuations in k-space on a uniform
Cartesian grid.  P(k) is sampled discretely at each grid point, with
the density fluctuations having a random complex phase and
amplitude. The amplitude is generated such that the distribution of
amplitudes is Gaussian.  This cube is then fourier transformed to give
physical density fluctuations. Particle positions and velocities and
baryon velocities are calculated using the Zel’dovich approximate. See
the document above, or read Bertschinger 1998 [16] for more
information.
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Enzo Internal Unit System

The units of the physical quantities used in Enzo depend on the problem being
run. For most test problems there is no physical length or time specified, so
the units can be be simply scaled. For cosmology, there are a set of units
designed to make most quantities of order unity so that single precision
floating-point variables can be used. These units are defined in
Enzo Output Formats.  Additionally, discussion of how particle masses are
stored in Enzo can be found at Enzo Particle Masses.  However, with the
broader use of Enzo for non-cosmological astrophysics applications, it has
become necessary to add a new set of units into the code. This page describes
how to set these units.

In order to have a self-consistent set of units, the user has to set
appropriate length, time, and mass OR density scales.  Simulations that include
gravity also need to have a self-consistent gravitational constant that is
scaled to the other variables. The four parameters that the user can set are
LengthUnits, TimeUnits, DensityUnits, and MassUnits. Only one of DensityUnits
or MassUnits needs to be set, since MassUnits = DensityUnits * LengthUnits
3 . Additionally, if the parameter SelfGravity is turned on (set to 1),
the parameter GravitationalConstant must be set to 4*pi*G, where G is
Newton’s gravitational constant as a dimensionless quantity (that is, with all
units scaled out).

The primary motivation for using a non-arbitrary set of units is to take
advantage of Enzo’s various chemistry and cooling algorithms, some of which
have been scaled assuming CGS units. To do this, one chooses physical units
assuming the simulation box size is unity in code units, and that a
density/mass and time value of 1 in code units are something meaningful in CGS.
For example, if one is interested in setting the box size to one parsec, a
density of 1 in code units equivalent to to 10 hydrogen atoms per cubic
centimeter (in CGS units), and the time unit to one million years, the
appropriate settings of the parameters would be as follows:

DensityUnits = 1.67e-23    # 10 hydrogen atoms per cc in CGS (c/cm^3)
LengthUnits = 3.0857e+18   # one parsec in cm
TimeUnits = 3.1557e+13     # one megayear in seconds





If we then wish to use gravity, the gravitational constant must be set
explicitly to 4*pi*G expressed in a unitless fashion. Since the gravitational
constant in CGS has units of cm3/(g*s2), this means that
the value should be 4*pi*Gcgs * DensityUnits * TimeUnits 2. So,
in the units expressed above, that means the gravity parameters must be set as
follows:

SelfGravity                = 1
GravitationalConstant      = 0.0139394         # 4*pi*G_{cgs}*DensityUnits*TimeUnits^2





Note that if gravity is turned on, the parameter TopGridGravityBoundary must
also be set to either 0 (periodic) or 1 (isolated).

If you set only LengthUnits and DensityUnits but not TimeUnits the code will
calculate it for you using the actual gravitational constant. You see it
printed out in the terminal when the code starts up and you can also find it
towards the end of the parameter file of any output.
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Enzo Particle Masses

A common problem for users who wish to manipulate Enzo data is understanding
Enzo’s internal unit system. This is explained in some detail in
Enzo Internal Unit System.  This page focuses specifically on the particle mass,
which is one of the least intuitive pieces of the internal code notation. The
most important thing to realize is that Enzo’s particle_mass attribute
*is not a mass* - it is actually a *density*.  This is done for a very
good reason - Enzo calculates the gravitational potential by solving Poisson’s
equation using a grid-based density field, and when calculating the dark matter
(or other particle) density, it is most efficient computationally to store it
as a density rather than as a mass to avoid having to divide by volume or
multiple by 1/V for every particle, on every timestep. So, the “mass” stored
within the code is really this value in the cosmology calculations:


[image: \mathrm{mass} = \frac{\Omega_{m0} - \Omega_{b0}}{\Omega_{m0}}\Big(\frac{\Delta x_p}{\Delta x_g}\Big)^3]


where [image: \Omega_{m0}] is OmegaMatterNow, [image: \Omega_{b0}] is
OmegaBaryonNow, [image: \Delta x_p] is the mean separation between particles at
the beginning of the simulation (in code units), and [image: \Delta x_g] is the
grid spacing (in code units) of the grid that the particle resides in.
Conversion to an actual mass is as follows:


[image: \mathrm{real mass} = \mathrm{particle mass} \times \Delta x_g^3 \times \mathrm{DensityUnits} \times \mathrm{LengthUnits}^3]


If one is using massive (non-zero mass) particles in a
non-cosmology run, the formulation of the particle mass is
analogous: it can be calculated as:


[image: \mathrm{mass} = \frac{ \rho_{part} }{\mathrm{DensityUnits}}\Big(\frac{\Delta x_p}{\Delta x_g}\Big)^3]


where the upper and lower density values are the mean matter
density of your particle field (so total particle mass divided by
total volume, in your units of choice) divided by the DensityUnits
(such that the fraction is completely unitless).
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The Flux Object

This page is intended to document the creation, use, and
destruction of the Fluxes object in Enzo. This will not be a
complete description of the Flux Correction algorithm, see the
primary references for that.


Purpose

In order to keep the change in zone size across grid boundaries
consistent with the underlying conservation law, Flux Correction is
used. Basically, it makes sure that the change in Total Energy inside
a subgrid (or mass, momentum, or any other conserved quantitiy) is
equal to the flux across the boundary as seen by both levels. This
means that the coarse grid, which gets its solution in that space
replaced by the fine grid data, also needs to have the zones right
outside that space updated so they also see that same flux.

To facilitate this operation, the Fluxes object is used.

For each subgrid, there are two Fluxes objects, that store the flux
computed in the solver (typically Grid_[xyz]EulerSweep).  One
stores the fluxes that the fine grid computes, and one stores the
fluxes that the coarse grid computes. These are stored in two objects:
a grid member fluxes BoundaryFluxes for the fine data, and fluxes
***SubgridFluxesEstimate for the coarse data.




Fluxes.h

The actual object can be found in
src/enzo/Fluxes.h.

struct fluxes
{
  long_int LeftFluxStartGlobalIndex[MAX_DIMENSION][MAX_DIMENSION];
  long_int LeftFluxEndGlobalIndex[MAX_DIMENSION][MAX_DIMENSION];
  long_int RightFluxStartGlobalIndex[MAX_DIMENSION][MAX_DIMENSION];
  long_int RightFluxEndGlobalIndex[MAX_DIMENSION][MAX_DIMENSION];
  float *LeftFluxes[MAX_NUMBER_OF_BARYON_FIELDS][MAX_DIMENSION];
  float *RightFluxes[MAX_NUMBER_OF_BARYON_FIELDS][MAX_DIMENSION];
};





This contains two sets of arrays for the actual flux values, and 4
arrays to describe the position of the flux in the computational
domain. There is a flux on each face of the subgrid, and each flux
has a vector describing its start and end. For instance,
LeftFluxStartGlobalIndex[0][dim] describes the starting index for
the X face left flux. LeftFluxes[densNum][0] describes the flux of
density across the left x face.




SubgridFluxesEstimate

SubgridFluxesEstimate is a 2 dimensional array of pointers to
Fluxes objects that a given grid patch will fill. Its indexing is like
*SubgridFluxesEstimate[Grid][Subgrid] , where Grid goes over
all the grids on a level, and Subgrid goes over that grid’s
subgrids PLUS ONE for the grid itself, as each grid needs to keep
track of its own boundary flux for when it communicates with the
parent. (This last element is used in conjunction with the
BoundaryFluxes object, as we’ll see later)


Allocation

Allocation of the pointer array for the grids on this level happens
at the beginning of EvolveLevel:

fluxes ***SubgridFluxesEstimate = new fluxes **[NumberOfGrids];





At the beginning of the time loop, each grid has its subgrid fluxes
array allocated, and a fluxes object is allocated for each subgrid
(plus one for the grid itself)

while (dtThisLevelSoFar < dtLevelAbove) {
 ... timestep computation  ...
  for (grid = 0; grid < NumberOfGrids; grid++) {

     // The array for the subgrids of this grid
     SubgridFluxesEstimate[grid] = new fluxes *[NumberOfSubgrids[grid]];

     if (MyProcessorNumber ==
         Grids[grid]->GridData->ReturnProcessorNumber()) {

       for( Subgrids of grid ){
         SubgridFluxesEstimate[grid][counter] = new fluxes;
         ... Setup meta data ...
       }

       /* and one for the grid itself */
       SubgridFluxesEstimate[grid][counter] = new fluxes;
       ... and some meta data ...

     }
   } // end loop over grids (create Subgrid list)





Note that in older versions of Enzo are missing the processor
check, so fluxes objects are allocated for each grid and subgrid on
each processor, causing a bit of waste. This has been fixed since Enzo
1.5.

The LeftFluxes and RightFluxes are allocated in
Grid_SolveHydroEquations.C




Assignment

After the LeftFluxes and RightFluxes are allocated in
Grid_SolveHydroEquations.C, they are filled with fluxes from the
solver.  In v2.0, the C++ and FORTRAN interface with the hydrodynamics
solver was improved to avoid the previous method that juggled pointers
to a temporary array for the fluxes returned from the FORTRAN hydro
solver.  Now Grid_[xyz]EulerSweep.C allocates memory for each of
the flux variables and passes them into each of the FORTRAN hydro
routines.  This removes any size limitations that the old wrappers had
when the temporary array was too large.




Flux Correction

After being filled with coarse grid fluxes, SubgridFluxesEstimate
is then passed into UpdateFromFinerGrids, where it is used to
correct the coarse grid cells and boundary fluxes. For each
grid/subgrid, SubgridFluxesEstimate is passed into
Grid_CorrectForRefinedFluxes as InitialFluxes. The difference of
InitialFluxes and RefinedFluxes is used to update the appropriate
zones. (Essentially, the coarse grid flux is removed from the
update of those zones ex post facto, and replaced by the average of
the (more accurate) fine grid fluxes.

See the section below for the details of SubgridFluxesRefined and
RefinedFluxes.




AddToBoundaryFluxes

The last thing to be done with SubgridFluxesEstimate is to update
the BoundaryFluxes object for each grid on the current level. Since
multiple fine grid timesteps are taken for each parent timestep,
the total flux must be stored on the grids boundary. This is
done in Grid_AddToBoundaryFluxes, at the end of the EvolveLevel
timestep loop.




Deallocation

In the same grid loop that BoundaryFluxes is updated, the
SubgridFluxesEstimate object is destroyed with DeleteFluxes, and
the pointers themselves are freed.

for (grid = 0; grid < NumberOfGrids; grid++) {
   if (MyProcessorNumber == Grids[grid]->GridData->ReturnProcessorNumber()) {

    Grids[grid]->GridData->AddToBoundaryFluxes
        (SubgridFluxesEstimate[grid][NumberOfSubgrids[grid] - 1])


    for (subgrid = 0; subgrid < NumberOfSubgrids[grid]; subgrid++) {

     DeleteFluxes(SubgridFluxesEstimate[grid][subgrid]);

     delete SubgridFluxesEstimate[grid][subgrid];
    }
   delete [] SubgridFluxesEstimate[grid];
  }










grid.BoundaryFluxes

Each instance of each grid has a fluxes BoundaryFluxes object that
stores the flux across the surface of that grid. It’s used to
correct it’s Parent Grid.


Allocation

BoundaryFluxes is allocated immediately before the timestep loop
in EvolveLevel by the routine ClearBoundaryFluxes.




Usage

For each grid, BoundaryFluxes is filled at the end of the
EvolveLevel timestep loop by the last element of the array
SubgridFluxesEstimate[grid] for that grid. This is additive,
since each grid will have multiple timesteps that it must correct
its parent for. This is done by AddToBoundaryFluxes, as
described above.

BoundaryFluxes is used in UpdateFromFinerGrids to populate another
fluxes object, SubgridFluxesRefined. This is done in
GetProjectedBoundaryFluxes. The values in SubgridFluxesRefined are
area weighted averages of the values in BoundaryFluxes, coarsened
by the refinement factor of the simulation. (So for factor of 2
refinement, SubgridFluxesRefined has half the number of zones in
each direction than BoundaryFluxes, and matches the cell width of
the parent grid.)

BoundaryFluxes is also updated from subgrids in
CorrectForRefinedFluxes. This happens when a subgrid boundary lines
up exactly with a parent grid boundary. However, in many versions
of Enzo, this is deactivated by the following code:

        CorrectLeftBoundaryFlux = FALSE;
        CorrectRightBoundaryFlux = FALSE;
#ifdef UNUSED
        if (Start[dim] == GridStartIndex[dim]-1)
          CorrectLeftBoundaryFlux = TRUE;
        if (Start[dim] + Offset == GridEndIndex[dim]+1)
          CorrectRightBoundaryFlux = TRUE;
#endif /* UNUSED */





It is unclear why this is, but removal of the UNUSED lines restores
conservation in the code, and is essential for proper functioning
of the MHD version of the code (which will be released in the
future.) I have seen no problems from removing this code.

Many implementations of block structured AMR require a layer of
zones between parent and subgrid boundaries. Enzo is not one of
these codes.




Deallocation

BoundaryFluxes is only deleted once the grid itself is deleted.
This happens mostly in RebuildHierarchy.






SubgridFluxesRefined

The final instance of a fluxes object is fluxes
SubgridFluxesRefined. This object takes the fine grid fluxes,
resampled to the coarse grid resolution, and is used to perform the
flux correction itself. This section is short, as its existance has
been largely documented in the previous sections.


Allocation

SubgridFluxesRefined is declared in UpdateFromFinerGrids. The
actual allocation occurs in Grid_GetProjectedBoundaryFluxes, where
it’s passed in as ProjectedFluxes.




Usage

SubgridFluxesRefined is also filled in
Grid_GetProjectedBoundaryFluxes, as the area weighted average of
the subgrid boundary flux.

It is then passed into Grid_CorrectForRefinedFluxes, Here, it is
used to update the coarse grid zones that need updating.




Deallocation

SubgridFluxesRefined is deleted after it is used in
Grid_CorrectForRefinedFluxes.
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Header files in Enzo

Here is a complete list of the Enzo 2.0 header files and a brief
description of what they do.

src/enzo/CoolData.h


Contains parameters for cooling tables and radiation fields.  Most
importantly this struct has the pointers to the tabulated cooling
functions that are used in cool1d_multi.src.  This type is used
for the global variable CoolData.


src/enzo/CosmologyParameters.h


Defines the global variables that are used in cosmology
simulations, e.g. cosmological parameters, initial redshift,
redshift outputs.


src/enzo/ealFloat.h


Class for floating-point arrays that supports array arithmetic.
Mainly used by the Enzo Analysis class.


src/enzo/ealInt.h


Same as ealFloat.h but for integers.


src/enzo/EnzoArray.h


Templated class that is a container for grid and particle quantities
in the Enzo Analysis class.


src/enzo/enzo_unit_tests.h


Framework for simple tests on Enzo.  Not used in typical
simulations.


src/enzo/ExternalBoundary.h


The ExternalBoundary class definition.


src/enzo/FastSiblingLocator.h


Structure definitions for the chaining mesh and sibling lists.


src/enzo/flowdefs.h


Function prototypes and variables for FLOW_TRACE define.  Currently
not used.


src/enzo/Fluxes.h


The fluxes structure, used to contain the Coarse and Refined fluxes
for each parent/subgrid pair.


src/enzo/global_data.h


This houses all global parameters for Enzo, which is most of them.
Variables defined here are defined as extern in all routines but
src/enzo/enzo.C (see the DEFINE_STORAGE #define there) and
are initialized with src/enzo/SetDefaultGlobalValues.C.


src/enzo/Grid.h


This defines the primary God Class, grid.


src/enzo/GridList.h


Structure for a linked list of grids.  Used when identifying new
subgrids, Grid_IdentifyNewSubgrids.C and
Grid_IdentifyNewSubgridsSmall.C.


src/enzo/Hierarchy.h


Defines the HierarchyEntry linked list structure. More can be found
about this in Getting Around the Hierarchy: Linked Lists in Enzo.


src/enzo/ImplosionGlobalData.h


Contains global variables that have store the parameters in the
Implosion problem type.


src/enzo/LevelHierarchy.h


Defines the LevelHierarchyEntry linked list structure. More can
be found about this in Getting Around the Hierarchy: Linked Lists in Enzo.


src/enzo/ListOfParticles.h


Structure for a linked list of particle lists.  Used in
OutputAsParticleData.C.


src/enzo/macros_and_parameters.h


This is the home for all preprocessor directives, and is responsible
for overloading floating point precision keywords.


src/enzo/message.h


Defines to handle error, warning, and debug messages.


src/enzo/MTLPARAM.h


Common variables for the Cen’s metal cooling routines,
mcooling.src


src/enzo/performance.h


Defines for the interface between Enzo and LCAperf.


src/enzo/phys_constants.h


Defines for physical constants


src/enzo/ProtoSubgrid.h


Defines the ProtoSubgrid class, used in src/enzo/FindSubgrids.C.


src/enzo/RadiationFieldData.h


Structure that contains the parameters and variables that describe
the background radiation field.  Only used for the global variable
RadiationData in global_data.h.


src/enzo/RateData.h


Structure that holds all of the parameters and arrays of the rate
equations for the non-equilibrium chemistry.  Only used for the
global variable RateData.


src/enzo/region.h


Structures that describe a region when computing the parallel FFT.


src/enzo/SedovBlastGlobalData.h


Contains global variables that have store the parameters in the
Sedov blast problem type.


src/enzo/ShockPoolGlobalData.h


Contains global variables that have store the parameters in the
shock pool problem type.


src/enzo/SphericalInfall.h


Contains global variables that have store the parameters in the
spherical infall problem type.


src/enzo/StarParticleData.h


Global variables that store parameters about the star formation
routines.  It also has variables that keep track of the number of
stars.


src/enzo/TestGravitySphereGlobalData.h


Contains global variables that have store the parameters in the test
gravity sphere problem type.


src/enzo/TestProblemData.h


Structure that stores parameters that describe a problem
initialization.


src/enzo/TopGridData.h


Defines the TopGrid structure, which houses the global parameters of
the simulation.


src/enzo/typedefs.h


Has all the enumerate lists used to give words to
parameters. Defines types for field (density, etc), interpolation
method, hydro method, boundary type, gravity boundary type.


src/enzo/units.h


Global variables that store the units in CGS.  Used when
ComovingCoordinates is off.


src/enzo/WavePoolGlobalData.h


Contains global variables that have store the parameters in the wave
pool problem type.
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The Enzo Makefile System

The makefile system in Enzo is a bit complicated, because it’s
designed to work on many different platforms, allow many different
compile-time configuration settings, and be usable by automated
systems such as the lcatest parallel program testing
environment.

To decouple machine-specific settings from configuration-specific
settings, it’s organized into separate files summarized below.  Note
that the files discussed on this page are found in the src/enzo
subdirectory.







	Makefile
	The main makefile for compiling the Enzo executable enzo.exe


	Make.mach.*
	These files contain all machine-dependent settings


	Make.config.*
	These files contain all compile-time configuration settings





If there is already a Make.mach.* file present for the particular
machine you want to compile on, and you just want to compile Enzo
with the default configuration, then compiling is relatively
straightforward. For example, to compile Enzo on NICS’s Kraken
platform (starting from the top-level Enzo directory):

./configure
cd src/enzo
gmake machine-nics-kraken
gmake





If all goes well, this should create the enzo.exe executable in
the src/enzo subdirectory.  Also, note that gmake is required,
though make may work on your system as well.


Machine settings

If there is not already a Make.mach.* file present for your
platform, you will need to create one.  The easiest way to port
Enzo to a new platform is to copy an existing Make.mach.* file
to a new one and edit it accordingly.  Generally, all variables
prefixed by MACH_ in Make.mach.* files should be assigned a
value (even if that value is an empty string), and all variables that
begin with LOCAL_ (or anything else) are optional and only
accessed within the Make.mach.* file itself.

The list of MACH_ variables that can be set are listed below.

General variables:







	MACH_FILE
	Name of the make include file for the machine, e.g. Make.mach.nics-kraken


	MACH_TEXT
	Description of the platform, e.g. "NICS Kraken"


	MACH_VALID
	Should be set to 1, though not currently accessed





Paths to compilers:







	MACH_CPP
	The C preprocessor


	MACH_CC_MPI
	The MPI C compiler


	MACH_CC_NOMPI
	The C compiler


	MACH_CXX_MPI
	The MPI C++ compiler


	MACH_CXX_NOMPI
	The C++ compiler


	MACH_F90_MPI
	The MPI F90 compiler


	MACH_F90_NOMPI
	The F90 compiler


	MACH_FC_MPI
	The MPI F77 compiler


	MACH_FC_NOMPI
	The F77 compiler


	MACH_CUDACOMPILER
	The CUDA compiler


	MACH_LD_MPI
	The MPI linker (typically the MPI C++ compiler)


	MACH_LD_NOMPI
	The linker (typically the C++ compiler)





Compiler flags:







	MACH_CPPFLAGS
	Machine-dependent flags for the C preprocessor, e.g.  -P -traditional


	MACH_CFLAGS
	Machine-dependent flags for the C compiler


	MACH_CXXFLAGS
	Machine-dependent flags for the C++ compiler


	MACH_F90FLAGS
	Machine-dependent flags for the F90 compiler


	MACH_FFLAGS
	Machine-dependent flags for the F77 compiler


	MACH_LDFLAGS
	Machine-dependent flags for the linker





Machine-specific flags:







	MACH_DEFINES
	Machine-specific defines, e.g. -DLINUX, -DIBM, -DIA64, etc.





Paths to include header files:







	MACH_INCLUDES
	All required machine-dependent includes–should at least include    HDF5.


	MACH_INCLUDES_HYPRE
	Includes for optional Hypre linear solver package


	MACH_INCLUDES_MPI
	Includes for MPI if needed


	MACH_INCLUDES_CUDA
	Includes for CUDA if needed


	MACH_INCLUDES_PYTHON
	Includes for Python if needed





Paths to library files:







	MACH_LIBS
	All required machine-dependent libraries–should at least include    HDF5.


	MACH_LIBS_HYPRE
	Libraries for optional Hypre linear solver package


	MACH_LIBS_MPI
	Libraries for MPI if needed


	MACH_LIBS_PAPI
	Libraries for optional PAPI performance package (optionally called    by lcaperf)


	MACH_LIBS_CUDA
	Libraries for CUDA if needed


	MACH_LIBS_PYTHON
	Libraries for Python if needed





Optimization flags:







	MACH_OPT_AGGRESSIVE
	Compiler/link flags for “aggressive” optimization


	MACH_OPT_DEBUG
	Compiler/link flags for debugging


	MACH_OPT_HIGH
	Compiler/link flags for standard optimizations


	MACH_OPT_WARN
	Compiler/link flags to generate verbose warning messages





Although it breaks from the MACH_* naming convention, there is
also a MACHINE_NOTES variable for machine-specific information
that is displayed whenever Enzo is compiled.




Makefile commands

The default action of typing gmake without a target is to attempt
to compile Enzo.  Other high-level makefile targets are help,
and clean:







	gmake
	Compile and generate the executable enzo.exe


	gmake help
	Display this help information


	gmake clean
	Remove object files, executable, etc.





(For brevity we’ll omit the gmake portion for the remainder of the
discussion.)

Configuration-related targets are help-config, show-config,
show-flags, and default:







	help-config
	Display detailed help on configuration make targets


	show-config
	Display the current configuration settings


	show-flags
	Display the current compilers and compilation flags


	default
	Reset the configuration to the default values





Note that gmake default may also clear your machine setting, in
which case you will need to rerun gmake machine-platform.




Configuration options

Other configuration targets, set using e.g. gmake integers-32,
are listed below:


Free parameters







	max-subgrids-N
	Set the maximum number of subgrids to N.


	max-baryons-N
	Set the maximum number of baryon fields to N.


	max-tasks-per-node-N
	Set the number of tasks per node to N.


	memory-pool-N
	Set initial memory pool size (in number of photons).








Precision settings







	integers-[32|64]
	Set integer size to 32- or 64-bits.


	precision-[32|64]
	Set floating-point precision to 32- or 64-bits.


	particles-[32|64|128]
	Set particle position precision to 32-, 64-, or 128-bits.


	inits-[32|64]
	Set inits precision to 32- or 64-bits.


	io-[32|64]
	Set IO precision to 32- or 64-bits.


	particle-id-[32|64]
	Set integer size for particle IDs








Global settings







	object-mode-[32|64]
	Set address/pointer size to 32-bit or 64-bit object files.  This is an    obsolete setting and is no longer used.


	testing-[yes|no]
	Include hooks for the lcatest regression tests








Algorithmic settings







	bitwise-[no|yes]
	Turn on blocking-gravity for bitwise identical runs


	emissivity-[no|yes]
	Include emissivity field


	fastsib-[no|yes]
	Include fast sibling search


	fluxfix-[no|yes]
	Include sibling subgrid boundary fix


	newgridio-[no|yes]
	Use the new Grid IO routines


	photon-[no|yes]
	Include radiative transfer (adaptive ray tracing)








External libraries







	use-mpi-[yes|no]
	Set whether to use MPI.


	isolated-bcs-[yes|no]
	Set whether to compile in isolated boundary conditions code


	tpvel-[yes|no]
	Set whether to compile in tracer particle velocity information


	lcaperf-[yes|no]
	Set whether to call the optional lcaperf performance tool


	papi-[yes|no]
	Set whether to link in the PAPI library if required by lcaperf


	hypre-[no|yes]
	Include HYPRE libraries (implicit RT solvers)


	cuda-[no|yes]
	Set whether to use CUDA (GPU-computing)


	python-[no|yes]
	Set whether to use inline python


	use-hdf4-[no|yes]
	Set whether to use HDF4








Performance settings







	opt-VALUE
	Set optimization/debug/warning levels, where VALUE = [warn|debug|high|aggressive|cudadebug]


	taskmap-[yes|no]
	Set whether to use unigrid taskmap performance modification


	packed-amr-[yes|no]
	Set whether to use ‘packed AMR’ disk performance modification.


	packed-mem-[yes|no]
	Set whether to use ‘packed memory’ option: requires packed AMR.


	unigrid-transpose-[yes|no]
	Set whether to perform unigrid communication transpose performance   optimization


	ooc-boundary-[yes|no]
	Set whether to use out-of-core handling of the boundary


	log2alloc-[yes|no]
	Set whether to compile with grid/particle arrays allocated in sizes of powers of 2










The Make.config.* Files


The Make.config.settings and Make.config.override files

The default configuration settings and current configuration
settings are stored in the two files Make.config.settings and
Make.config.override.

The Make.config.settings file consists of assignments to the
CONFIG_* make variables that define the default configuration
settings in Enzo‘s makefile. This file should not be modified
lightly.  If you type gmake default, then these will become the
currently active settings.

The Make.config.override file, together with the
Make.config.settings file, define the current configuration
settings. This file should also not be edited (since misspelled
configuration variable names may not be detected, leading to behavior
that is unexpected and difficult to locate), though it will be modified
indirectly through gmake when setting new configuration
values. For example, if you were to type gmake integers-32, then
the Make.config.override file would contain CONFIG_INTEGERS =
32.  The values in the Make.config.override file essentially
override the settings in Make.config.settings.

In summary:


default settings = Make.config.settings

current settings =
Make.config.settings + Make.config.override




Typing gmake default will clear the Make.config.override
file entirely, making the default settings in Make.config.settings
the current settings.




The Make.config.objects file

This file is used simply to define the list of all object files,
excluding the file containing main(). Only one variable needs to
be set.







	OBJS_CONFIG_LIB
	List of all object files excluding the file containing main()





Dependencies are generated automatically using the makedepend
command and stored in the DEPEND file, so dependencies don’t need
to be explicitly included.  If it complains about missing files,
such as DEPEND or Make.config.override, then try (re)-running
the ./configure script in the top-level Enzo subdirectory.




The Make.config.targets file

This file contains rules for all configuration-related make
targets. It exists mainly to reduce the size of the top-level
Makefile. When adding new configuration settings, this file will
need to be modified.




The Make.config.assemble file

This file contains all the makefile magic to convert configuration
settings (defined by $(CONFIG_*) make variables) into appropriate
compiler flags (such as $(DEFINES), $(INCLUDES), etc.). When
adding a new configuration setting, this file will need to be
modified.

James Bordner (jobordner at ucsd.edu)
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Parallel Root Grid IO

Parallel Root Grid IO (PRGIO) is a set of Enzo behaviors that allow
the user to run problems that has a root grid larger than the
available memory on a single node.

This page is intended for developers that need to write new problem
generators that will be run at extremely large scale. Large problem
size will need to utilize the PRGIO machinery in Enzo.  As this brings
a significant amount of added complexity, it isn’t recommended for
smaller problems. It is also recommended that you write the problem
generator without this machinery first, and test on smaller problems,
before adding the additional complexity. If you don’t intend to write
your own problem generator, this page is basically irrelevant.


Background: why it is how it is

PRGIO is an essential component of doing any simulations at large
scale. In its initial inception, Enzo worked on shared memory
machines. This meant that the total computer memory available dictated
the problem size. Enzo would allocate the root grid on the root
processor, then distribute spatially decomposed parts of the root grid
to the other processors. When it came time to write the data, the root
grid was collected back to the root processor, and written in a single
file.

This worked fine until distributed computers were deployed in response
to the limitations of a shared memory computer.  This coincided with a
growth of the desired root grid size for the Enzo simulation. Now, the
total aggregate memory of a single shared memory computer and the
memory required were vastly different.  The old model broke down
because you simply can’t fit the 15x5123arrays you need in
512 Mb of RAM, but you can on 64 nodes if the memory is taken as an
aggregate total.  So out of necessity, PRGIO was born.




Short version

Essentially, PRGIO has three components (though not called in this
order)


	Input/Restart

	Output

	Initialization




Input and Restarting

During initialization, the root grid is partitioned into tiles, and
each processor reads the part, i.e. a HDF5 hyperslab, of the initial
data files.  For restarts, each grid is read by one processor that
owns the data (ProcessorNumber == MyProcessorNumber) from the HDF5
file containing it.




Output

Unlike early versions of Enzo that collected all the grid data on one
processor before writing to disk, with PRGIO each processor writes an
HDF5 file for each grid it owns. In the packed AMR output mode, each
processor writes one HDF5 file, and in it go all the grids it owns.




Initialization

This is the part that needs attention, because the details are not
obvious from the code itself.

Initialization BEFORE PRGIO happens in three steps:


	Set up grid

	Allocate Data on the TopGrid object, on the Root Processor

	Partition TopGrid across processors.



WITH PRGIO, the order is different:


	Set up grid

	Partition TopGrid

	Allocate Data on the working grids.






Setup and Allocation

This is pretty straightforward in principle, but the
implementation is a little confusing.

First grids need to be set up. There aren’t very many things you need
to do. See MyProblemInitializeGrid for a more
comprehensive overview.  Simplified, a count of the
NumberOfBaryonFields is made and a record of which field is which
goes in the FieldType array.

After the Partition (next section), you need to allocate the data.

The confusing bits are in the implementation. We’ll describe this by
way of example, using Cosmology simulations as our descriptor.
CosmologySimulationInitialize.C contains two routines:
CosmologySimulationInitialize() (CSI) and
CosmologySimulationReInitialize() (CSRI). These are both called in
InitializeNew(). The job of the first routine is to set up the
hierarchy of grids and subgrids you’ll need for your cosmology
simulation, and call CosmologySimulationInitializeGrid (CSIG).
Both CSI and CSIG are called whether or not PRGIO is on. CSRI is
called from InitializeNew() after the Top Grid is partitioned. It
is only called when PRGIO is on.

Stated a different way:


	InitializeNew: reads the parameter file, then calls

	CosmologySimulationInitialize: sets up the grid hierarchy.  On each of those grids gets called

	CosmologySimulationInitializeGrid: which sets NumberOfBaryonFields, and may allocate data.

	PartitionGrid: breaks the root grid into parts, and sends those parts to the other processors.

	CosmologySimulationReInitialize: If PRGIO is on, this is called. It loops over grids and calls CosmologySimulationInitializeGrid again, which allocates and defines the data.



CSI passes a flag, TotalRefinement to CSIG for each grid you
initialize. This is equal to (refinement factor)(refinement
level of this grid). So for the Top grid, this is equal to 1, and
something that is greater than 1 on all other grids.

Inside of CSIG: if PRGIO is on and TotalRefinement == 1, then
statements relating to reading data from disk, allocating memory,
and accessing memory are skipped. (this is done by setting
ReadData = FALSE) In all other cases, it’s left on. (So if PRGIO is
off, or this grid is not on the root level.) Thus at the first
pass at initialization, the TopGrid doesn’t get it’s BaryonFields
allocated.

The same procedure is done on the nested initial grids if
PartitionNestedGrids == 1.  If not, the root processor will read
the entire nested grid, partition it into smaller subgrids, and
finally send the data to different processors if LoadBalancing >
0.  Regardless of the value of PartitionNestedGrids, the
partitions of the static nested grids will never be re-combined for
I/O, unlike the behavior of the root grid when PRGIO is off.

CSRI is called AFTER the root grid has been partitioned and sent
off to the other processors. It does very little except call CSIG
again. This time when CSIG is called, TotalRefinement = -1. This
allows the data to be allocated.






Partition TopGrid and /* bad kludge */

The other confusing part the partition, specifically a line in
ExternalBoundary::Prepare().

if (ParallelRootGridIO == TRUE)
    TopGrid->NumberOfBaryonFields = 0; /* bad kludge! */





More on that in a moment.

CommunicationPartitionGrid() is the routine that takes the TopGrid
(or, any grid) and breaks it across the processors. It first sorts
out the layout of the processors with MPI_Dims_create(). It then
evenly splits the initial grid over those processors by first
creating a new grid on each tile, linking them to the Hierarchy
linked list. It then (and here’s the tricky part)
allocates each grid on the Root processor and copies data from the
Initial Grid to the new tile. Finally, it take these freshly created
root grid tiles and sends them to their new processor home.

Here’s where the bad kludge! comes in. You’ll note that in the
above description, there’s an allocate on each of the newly created
tiles on the root processor, which will allocate more than the root
grid data. This is the problem we were trying to avoid. So
ExternalBoundary::Prepare() sets NumberOfBaryonFields to zero,
so when the allocate comes around it’s allocating Zero fields.

Why is it in ExternalBoundary::Prepare()? A look at the lines
immediately preceding the ‘kludge’ help:

BoundaryRank = TopGrid->GridRank;
NumberOfBaryonFields = TopGrid->NumberOfBaryonFields;
if (ParallelRootGridIO == TRUE)
  TopGrid->NumberOfBaryonFields = 0; /* bad kludge! */





In order to do its job properly, the ExternalBoundary objects need
to know how many BaryonFields there are in the simulation. So
ExternalBoundary::Prepare() records the data, and because that’s
the last place NumberOfBaryonFields is needed, sets it to zero.

When CommunicationPartitionGrid() gets to the point where it
allocates the data, NumberOfBaryonFields is now zero, so it
allocates no data. These empty root grid tiles are then distributed to
the other processors.

Finally, CosmologyReInitialize() is called, which calls
CosmologyInitializeGrid(). This code then resets
NumberOfBaryonFields to its proper value, and since
TotalRefinement = -1 allocates all the data.

Then the simulation continues on, only aware of PRGIO when it comes
time to not collect the data again.
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Getting Around the Hierarchy: Linked Lists in Enzo

There are two primary linked lists in Enzo; HierarchyEntry and
LevelHierarchyEntry. They’re both used to traverse the hierarchy,
but in very different ways. HierarchyEntry is used to traverse
down the hierarchy, from a parent to its children.
LevelHierarchyEntry is used to traverse across the hierarchy,
on a single level.

One of the primary things to note about the two lists is that
NextGridThisLevel (which exists in both) serve different purposes.

In LevelHierarchyEntry, NextGridThisLevel links all the grids on a
given level together.

In HierarchyEntry, NextGridThisLevel only counts things on a given
level that share a parent.

Below we will present a description of the structures and their
creation and usage in Enzo.


HierarchyEntry

The HierarchyEntry linked list is used for traversing down the
hierarchy, from parents to children.

This is the contents of the definition of the structure, which you
can find in src/enzo/Hierarchy.h.

struct HierarchyEntry
{
  HierarchyEntry *NextGridThisLevel; /* pointer to the next grid on level */
  HierarchyEntry *NextGridNextLevel; /* pointer to first child of this grid */
  HierarchyEntry *ParentGrid;        /* pointer to this grid's parent */
  grid           *GridData;          /* pointer to this grid's data */
};





NextGridThisLevel connects all children of a parent.
NextGridNextLevel points to the first child of the given grid.
ParentGrid connects to the parent, and GridData points to the
actual grid structure.


Usage of HierarchyEntry lists

The HierarchyEntry list is used (among other things) whenever
communication between
child and parent grids needs to be done. The typical pattern for
looping over all the children of a parent grid is as following:

	1
2
3
4
5
6
7
8

	 HierarchyEntry * NextGrid = ParentGrid->NextGridNextLevel;
 while (NextGrid != NULL ){
   if (NextGrid->GridData->SomeFunctionOnChildren(args) == FAIL )
     fprintf(stderr, "Error in your function\n");
     return FAIL;
   }
   NextGrid = NextGrid->NextGridThisLevel;
 }







Line 1 sets the pointer NextGrid to the “first” child of the parent
grid.

Line 2 starts the while loop.

Lines 3-6 is the standard function call pattern in Enzo.

Line 7 advances the pointer to the next child on the child
level.

This loop stops once all the children of ParentGrid have been
accessed, because the last child grid
of a given parent has NULL as NextGridThisLevel.




Generation of HierarchyEntry lists

The HierarchyEntry linked list is generated in several different
points in the code. The details are slightly different for each
place it’s used, depending on the details of what that linked list
is used for and the assumed structure of the hierarchy at that
point. The list most used in the code is the one generated in
src/enzo/FindSubgrids.C,
called in src/enzo/RebuildHierarchy.C.
This code is called on a single ‘Parent Grid’
at a time. Paraphrased and annotated:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	HierarchyEntry *, *ThisGrid;
PreviousGrid = &ParentGrid;
 for (i = 0; i < NumberOfSubgrids; i++) {

   ThisGrid = new HierarchyEntry;

   if (PreviousGrid == &ParentGrid)
     ParentGrid.NextGridNextLevel = ThisGrid;
   else
     PreviousGrid->NextGridThisLevel = ThisGrid;
   ThisGrid->NextGridNextLevel = NULL;
   ThisGrid->NextGridThisLevel = NULL;
   ThisGrid->ParentGrid        = &ParentGrid;

   ThisGrid->GridData = new grid;
   ThisGrid->GridData = Setup Functions Skipped for clarity;

   PreviousGrid = ThisGrid;
}







Line 1 starts the HierarchyEntry list with ParentGrid. (Called
simply Grid in the source, changed here for clarity.)

Line 5 creates the next HierarchyEntry to be added to the list.

Line 7-8 attaches the new subgrid, and the ensuing subgrid chain,
to the parent grid (note that this is only done for the first new
subgrid)

line 10 attaches all subsequent new subgrids to the
NextGridThisLevel chain.

Lines 11 and 12 ensure that both lists terminate with this new
grid. NextGridThisLevel will be replaced if there is in fact a next
grid. Since this routine is called only on a single Parent at a
time, one can now see that for HierarchyEntry, the
NextGridThisLevel list only links children that belong to the same
Parent Grid.

Lines 13-17 finish setting up this grid.

If you’re writing a new problem generator, and have been brought
here by the AMR problem generation page, we advise that you examine
one of the other code patterns that are used in Enzo. They look
fairly similar to the above code, though have some details
different. Some suggestions are:

For adding a single subgrid, visit
src/enzo/SphericalInfallInitialize.C.

For adding a single stack of nested subgrids, see
/src/enzo/ProtostellarCollapseInitialize.C.

For a completely general, though more complex setup, see
src/enzo/CosmologySimulationInitialize.C.

Another notable routine that generates HierarchyEntry lists is
src/enzo/CommunicationPartitionGrid.C, which
breaks the TopGrid pointer across multiple processors.






LevelHierarchyEntry and LevelArray

The LevelHierarchyEntry Linked List is used for traversing all the
grids on a given level. It’s a simpler structure than
HierarchyEntry. The source can be found in
src/enzo/LevelHierarchy.h.

struct LevelHierarchyEntry
{
  LevelHierarchyEntry *NextGridThisLevel;  /* next entry on this level */
  grid                *GridData;           /* pointer to this entry's grid */
  HierarchyEntry      *GridHierarchyEntry; /* pointer into hierarchy */
};





NextGridThisLevel connects all grids on a given level. GridData
points to the actual grid object, and GridHierarchyEntry points to
the (unique) HierarchyEntry node discussed above.

The LevelHierarchyEntry lists, one for each populated level, are
all bundled together in the LevelArray object. Both data structures
will be discussed presently.


Usage of LevelHierarchyEntry and LevelArray

The main usage of the LevelHierarchyEntry list is quite similar to
the main loop for HierarchyEntry lists.

LevelHierarchyEntry *Temp = LevelArray[level];
while (Temp != NULL) {
  if (Temp->GridData->MyCode(MyArgs) == FAIL) {
    fprintf(stderr, "Error in grid->SetExternalBoundaryValues.\n");
    return FAIL;
  }
  Temp = Temp->NextGridThisLevel;
}





This calls MyCode for each grid on level.




Generation of LevelHierarchyEntry and LevelArray

This is done in two places in the code: in
src/enzo/main.C main.C and
src/enzo/RebuildHierarchy.C. It’s done by the code
src/enzo/LevelHierarchy_AddLevel.C, which is described below.

The setup, prep in main.C:

for (int level = 0; level < MAX_DEPTH_OF_HIERARCHY; level++)
  LevelArray[level] = NULL;





The call in main():

AddLevel(LevelArray, &TopGrid, 0);





The fill:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	void AddLevel(LevelHierarchyEntry *LevelArray[], HierarchyEntry *Grid,
              int level)
{
   LevelHierarchyEntry *ThisLevel;

  /* create a new LevelHierarchyEntry for the HierarchyEntry Grid
     and insert it into the head of the linked list (LevelArray[level]). */

  ThisLevel = new LevelHierarchyEntry;
  ThisLevel->GridData = Grid->GridData;
  ThisLevel->NextGridThisLevel = LevelArray[level];
  ThisLevel->GridHierarchyEntry = Grid;
  LevelArray[level] = ThisLevel;

  /* recursively call this for the next grid on this level. */

  if (Grid->NextGridThisLevel != NULL)
    AddLevel(LevelArray, Grid->NextGridThisLevel, level);

  /* ... and then descend the tree. */

  if (Grid->NextGridNextLevel != NULL)
    AddLevel(LevelArray, Grid->NextGridNextLevel, level+1);
 }







This is a recursive function that takes LevelArray that’s to be
filled, the HierarchyEntry list that fills it, and a counter for
the level. It’s recursive in both HierarchyEntry‘s lists, both
NextGridNextLevel and NextGridThisLevel. The most notable lines are
11, 13, and 17. In lines 11 and 13, one can see that the current
HierarchyEntry is attached to the HEAD of the list, but line 17
shows that the HierarchyEntry list is traversed from its head to
its tail: so the LevelArray list is backwards from the
HierarchyEntry. This is only really needed information on the top
grid.






Traversing the Entire Hierarchy

Sometimes the user needs to traverse the entire hierarchy. This is
done with a recursive function call on the HierarchyEntry. This
should be done in a manner akin to the AddLevel code above.







          

      

      

    


    
         Copyright 2012, Enzo Developers.
      Last updated on Mar 09, 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Enzo 2.5 documentation 

          	Reference Information 
 
      

    


    
      
          
            
  
Machine Specific Notes

Here we will mention some miscellaneous notes on specific machines.
This is merely a list of pitfalls or things we have found useful,
and by no means a replacement to the documentation.


NICS: Kraken

http://www.nics.tennessee.edu/computing-resources/kraken


Important

Serious errors have been found with a few Enzo routines when using
-O2 and the PGI compilers on Kraken. Use with caution.




Trace Trap Flags

Useful for debugging, but slows the code down. You can find this
info in the pgCC man page. (Not all compilers have decent trace
trapping, so it deserves a mention here.)

-Ktrap=[option,[option]...]
       Controls the behavior of the processor when
       exceptions occur.  Possible options include
       -Ktrap=divz  Trap on divide by zero.
       -Ktrap=fp  Trap on floating point exceptions.
       -Ktrap=align Trap on memory alignment errors, currently ignored
       -Ktrap=denorm Trap on denormalized operands.
       -Ktrap=inexact Trap on inexact result.
       -Ktrap=inv Trap on invalid operands.
       -Ktrap=none (default)   Disable all traps.
       -Ktrap=ovf Trap on floating point overflow.
       -Ktrap=unf Trap on floating point underflow.
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Particles in Nested Grid Cosmology Simulations

When running a nested grid cosmology simulation, not all the
particles created by inits necessarily lie inside of the intended
grid. This has to do with they way particle positions are
calculated from the velocity field. This problem is not a flaw in
the way inits makes initial conditions, but it can lead to
unreliable results if it is not addressed.

Note: This effect does not always occur. But it should be
checked for when doing nested initial conditions.


The Problem

Following the
cosmology tutorial for
nested grids,
first inits is run, and then ring is run on the output of inits to
prepare data for the Parallel Root Grid IO mode of Enzo. The contents of the
initial conditions are easily inspected:

$ h5ls Particle*
ParticleMasses.0         Dataset {1, 2064384}
ParticleMasses.1         Dataset {1, 262144}
ParticlePositions.0      Dataset {3, 2064384}
ParticlePositions.1      Dataset {3, 262144}
ParticleVelocities.0     Dataset {3, 2064384}
ParticleVelocities.1     Dataset {3, 262144}





In this example, there are two initial grids. The root grid has
2,064,384 particles, and the nested grid has 262,144. After ring is
run, a number of files with prefixes PPos, PVel and PMass are
created. Using eight tasks, here are the contents of the PPos files
for the top grid:

$ h5ls PP*0
PPos0000.0               Dataset {3, 258304}
PPos0001.0               Dataset {3, 258304}
PPos0002.0               Dataset {3, 257792}
PPos0003.0               Dataset {3, 257792}
PPos0004.0               Dataset {3, 258304}
PPos0005.0               Dataset {3, 258304}
PPos0006.0               Dataset {3, 257792}
PPos0007.0               Dataset {3, 257792}





And the nested grid:

$ h5ls PP*1
PPos0000.1               Dataset {3, 32743}
PPos0001.1               Dataset {3, 32665}
PPos0002.1               Dataset {3, 32767}
PPos0003.1               Dataset {3, 32844}
PPos0004.1               Dataset {3, 32715}
PPos0005.1               Dataset {3, 32151}
PPos0006.1               Dataset {3, 32749}
PPos0007.1               Dataset {3, 32692}





The sum of the particles in the top grid files is 2,064,384
particles, but in the nested grid files it is only 261,326, a
deficit of 818 particles. The missing particles have been thrown
out by ring because they lie outside the nested grid boundaries.

If the sum of the particles in the files after ring has been run is
equal to the original total, the problem is not extant in the
dataset.




The Solution

The solution to this problem is to introduce an extra step between
inits and ring, where particles are moved to the correct grid.
However, when a particle is moved to a grid with a different
refinement, the mass of the particle must be modified. During this
step, when a particle changes grid, this move must be tracked and
its mass updated to reflect the different grid refinement. Please
see Writing your own tools, II - Enzo Physical Units
for more on why the particle mass must be changed when moving
between grids.

One wrinkle to this solution is the ParticleMasses file must be
created by inits, for all grids, along with the ParticlePositions
and ParticleVelocities files. CosmologySimulationParticleMassName
must therefore also be specified as an input in the Enzo parameter
file.

Linked here [http://barn.enzotools.org/inits_sort/]
is a simple Python [http://python.org/] script
that will fix the initial condition files. After running the
script, run ring on the new initial condition files. The script
requires a Python installation that has both
Numpy [http://numpy.scipy.org/] and
h5py [http://code.google.com/p/h5py/]. A simple way to gain an
installation of Python with these modules is to install
yt [http://yt.enzotools.org/], which is one of the
data analysis tools
available for Enzo.




Procedure

Save a copy of the script to the same directory as your nested
initial condition files. Edit the top of the file, where noted, to
match your setup. Please note the order items should be entered.
Once the settings are correct, invoke python inits_sort.py. The
updated initial condition files will be placed inside the directory
new_ICs. Then run ring on the new initial condition files, and use
the results with Enzo.
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Must Refine Particles

Must refine particles within Enzo are dark matter particles that force the code to refine the hydro mesh around their position up to a level specified by MustRefineParticlesRefineToLevel.  They are useful for cosmological zoom simulations and can be used to optimize refinment within the high resolution region (see Dynamic Refinement Regions in Nested Cosmology Simulations).  They can also be used in more general cases, as demonstrated in the TestOrbitMRP problem within the run directory.

Within the code, must refine particles act identically to dark matter particles, except for the refinement criteria they introduce.  To utilize this refinement criteria, CellFlaggingMethod should include 8.  The numerical value for the particle type of must refine particles is 4 (versus 1 for ordinary dark matter particles).  If you wish to use must refine particles in your simulation, particles should be given PARTICLE_TYPE_MUST_REFINE when they are inialized at start-up or when they are created during the simulation.

The code will flag cells around must refine particles following a cloud-in-cell (CIC) algorithm.  The default cloud size is one cell, so in the general case, each must refine particle will flag a total of 8 hydro cells.  The cloud size can be adjusted by the user with the internal parameter ParticleBufferSize.  Note that if ghost cells are flagged for refinement, this information is not communicated to the grid where the ghost cells are active.
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Dynamic Refinement Regions in Nested Cosmology Simulations

Traditionally, cosomological zoom-in simulations run with Enzo have used static nested regions that are rectangular in shape and surround the region of maximum refinement.  These static regions have served two purposes: one, they define the volume in the initial conditions where high and intermediate resolution particles are placed; and two, once the simulation has begun, they define the regions where AMR to high levels is allowed.  As particles of different masses move during the simulation, they will move to grids of either higher or lower resolution than their ‘birth’ grids where they were located during the problem initialization.

There are several strategies available for combating the limitations of this static approach, some of which are described below.  In addition, it may be sometimes desireable to restrict the region of maximum refinement to a non-rectangular volume or to a subset of the highest resolution particles.  Most of these approaches rely on must refine particles in Enzo, which are simply dark matter particles that have a specal type that signals the code to add extra refinement to the hydro mesh surrounding the particle (see Must Refine Particles).  Some of these options (but not all) are optimized for use with the initial conditions generator MUSIC [http://people.phys.ethz.ch/~hahn/MUSIC/].


Non-static Nested Grids

With this method, the static grids used during the simulation initialization are allowed to dynamically change during the simulation itself.  Refinement is adjusted to a minimum level appropriate for a dark matter particle’s mass each time the hierarchy is rebuilt.  This option can be activated by setting MustRefineParticlesCreateParticles = 3.  CosmologySimulationGrid parameters are still necessary because during the problem initialization particles of different masses can only be initialized in rectangular regions.  However, the user should not set RefineRegionLeftEdge or RefineRegionRightEdge as one would for a static nested run.  Also, StaticHierarchy = 0 should be set.

Within the code, this method works by identifying dark matter particles whose particle density is less than the cosmic dark matter density of the simulation as defined by CosmologySimulationOmegaCDMNow and OmegaMatterNow.  Users should recall that particle ‘masses’ stored by Enzo are actually particle densities (see Enzo Particle Masses).  When a dark matter particle resides on a grid whose resolution is equal to the resolution of the particle’s birth grid, the particle’s density will be exactly CosmologySimulationOmegaCDMNow/OmegaMatterNow.  If a particle is on a grid of coarser resolution, the particle’s density will be less than this fraction; in this case, refinement of the mesh is triggered around the particle until the particle’s density equals CosmologySimulationOmegaCDMNow/OmegaMatterNow.

The user should note that this method gaurentees that a particle will never be on a grid coarser than its generation grid, but a consequence of the CIC flagging method and Enzo’s grid deconstrution method is that particles can be on grids with finer resolution.  This method therefore does not prevent contamination of high resolution grids by low resolution particles.




MUSIC Ellipsoidal Masking

The nested cosmological initial conditions generator MUSIC can identify a subset high-resolution particles that lie within an ellipsoidal ‘masked’ region contained within the highest level nested region.  MUSIC identifies these particles particles within files called RefinementMask.x.  AMR in Enzo can be restricted to the volume containing these particles by setting MustRefineParticlesCreateParticles = 2 or 3, CosmologySimulationParticleTypeName = RefinementMask, CellFlaggingMethod = 8 and MustRefineParticlesRefineToLevel.  Typically, MustRefineParticlesRefineToLevel should be set to at least one more level than the highest level of the nested regions.  The level set for this parameter will force AMR to be done around the mask particles up to this level.  In practice, within the code, masked particles are made must refine particles during the simulation initialization and given a distinct particle type from other dark matter particles, which allows the code to identify them as masked particles.

If additional refinement criteria are set with CellFlaggingMethod (such as refinement on gas density), higher AMR levels can be reached up to the MaximumRefinementLevel, but only for those cells contained within the region flagged by the masked particles.

In the surrounding intermediate resolution nested region, if MustRefineParticlesCreateParticles = 2, then traditional static nested regions are used.  If MustRefineParticlesCreateParticles = 3, then non-static nested refinement as described above is conducted.




Non-ellipsoidal Masking

This method uses traditional static grids on intermediate levels, but within the highest level static region, maximum refinement is restricted to a volume surrounding a subset of the highest resolution dark matter particles by tagging them as must refine particles either from a list of particle IDs or within a specified rectangular box.  It is activated by setting MustRefineParticlesCreateParticles = 1.

These particles can be selected in one of two ways: (1) by specifiying a rectangular volume with the parameters MustRefineParticlesRegionLeftEdge and MustRefineParticlesRightEdge; or (2) by providing a list of particle IDs.  If MustRefineParticlesRegionLeftEdge and MustRefineParticlesRegionRightEdge are not set, but MustRefineParticlesCreateParticles = 1, then the code looks for an ascii file called MustRefineParticlesFlaggingList.in within the run directory.  The list method allows for a non-simply connected refinement mask.

The list of particle IDs can be obtained from a prior dark-matter-only simulation of the refined initial conditions.  The user should be cautitious when doing this, because particle IDs are not contained within the initial conditions; they are assigned during the problem initialization.  Depending on the way in which each simulation is initialized, particle IDs are not gaurenteed to be idential between simulations initialized on different numbers of cores.  These methods do not rely on the MUSIC initial conditions generator.

The user should also set CellFlaggingMethod and MustRefineParticlesRefineToLevel.  Also, despite using static nested grids, StaticHierarchy = 0 should be set.




RefineRegionAutoAdjust

One simple strategy for dynamically adjusting intermediatly refined nested regions is to allow the nested rectangular regions to shrink in a regular way with the comological collapse of structures.  This can be activated with the parameter RefineRegionAutoAdjust.  With this method, nested regions still maintain a regular shape, but the rectangles are allowed to shrink as the highest resolution particles occupy a smaller and smaller volume.
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Nested Grid Particle Storage in RebuildHierarchy


Problem

In the previous version of RebuildHierarchy(), all of the particles were
moved to the parent on the level L0 being rebuilt. This causes
problems when running large simulations with nested initial grids because a
small number of top-level grids cover the refine region, compared to the total
number of top-level grids. This is illustrated in the figure below.

[image: ../_images/particles_nested.jpg]
On distributed memory machines, only one (or more) top-level grid exists on one
processor. The particles are stored only on the host processor, stored in
grid::ProcessorNumber. This processor will run out of memory if a large
number of particles are moved exclusively to a grid on this processor.




Solution

We can avoid this memory oversubscription by temporarily keeping the particles
on the processor from the previous timestep, i.e. the processor of the original
child grid, during the rebuild process.  However, we still want to move the
particles to the parent grid on level L0 because we will be
rebuilding this and finer levels from the data existing on these grids.

This is only necessary on levels with static subgrids because on levels with
dynamics hierarchies the grids will be distributed across processors
sufficiently to avoid this problem. On the levels with static subgrids, we
depart from the standard particle storage in Enzo, where the particles are
stored on one processor and NumberOfParticles is the same on all
processors. We adopt the strategy of storing particles on many processors for
one grid, and NumberOfParticles denotes the number of particles actually
stored on the local processor. Once we rebuild the coarsest level with a
dynamical hierarchy, we move all of the particles to their host processor, i.e.
ProcessorNumber, and synchronize NumberOfParticles to equal the total
number of particles on the grid over all processors.

Below we will outline this method to distribute memory usage from particles
during RebuildHierarchy() on level L. Pre-existing routines in
RebuildHierarchy() are not included in the outline.


	Set NumberOfParticles to zero on all grids on level >= L, except
on the grid’s host processor.

	Find the finest level (Lsub) with static subgrids. In
the code, this is called MaximumStaticSubgridLevel.

	grid::MoveAllParticles() – Move all particles on grids on level >
L to their parents on level L, but keep them on the same processor as
before. Now the particles are on their parent, but distributed
across many processors.

	CommunicationTransferParticles() – Move any particles that have
migrated across grid boundaries to their siblings.

	CommunicationCollectParticles(SIBLINGS_ONLY) – If we are
rebuilding a level > Lsub, move all particles to their host
processor, as this new method is not needed. This was previously done
in grid::MoveAllParticles. This routine is faster than before
because we do the communication in one MPI_Alltoallv() call.

	Loop over levels L0 -> MAX_DEPTH_OF_HIERARCHY.

	DepositParticleMassFlaggingField() – If level <= Lsub,
then the particles are distributed across processor. This causes
complications when creating the mass refinement flagging field for
particles. Therefore, we must sum this particle mass field over
these processors. For each grid, only processors with particles
contribute to this sum to reduce the amount of computation and
communication. In short, this routine performs a non-blocking
MPI_SUM over a select number of processors.

	CommunicationCollectParticles(SUBGRIDS_LOCAL) – This routine
replaces grid::MoveSubgridParticlesFast(). It keeps the particles on
the same processor, but this doesn’t matter here because the
children grids are always created on the same processor as its
parent and then moved to another processor during load balancing.

	CommunicationCollectParticles(SIBLINGS_ONLY) – After load
balancing is complete on level Lsub, we can safely move the
particles to their host processor without the worry of running out
of memory.
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Estimated Simulation Resource Requirements

Estimating problem sizes for most Enzo calculations is at best an
inexact science, given the nature of Adaptive Mesh Refinement (AMR)
simulations. The fundamental issue with an AMR calculation in
cosmology or in many astrophysical situations where gravitational
collapse is important has to do with memory. The amount of memory
used at the beginning of the simulation (when you have a single
grid or a handful of grids) is far, far less than the memory
consumption at the end of the simulation, when there can be
hundreds of grids per processor. The amount of memory required can
easily grow by an order of magnitude over the course of a
cosmological simulation, so it is very important to make sure to
take this into account to ensure that enough memory is available in
later stages of your simulation. It is also important to realize
that in general one should try to keep the largest amount of data
per processing core that you can so that individual cores are never
data-starved. Data-starved processing units cause poor scaling, as
your CPUs will then be sitting idle while waiting for data from
other computing nodes. Computational fluid dynamics simulations are
notoriously communication-heavy, making this a challenging corner
of parameter space to operate in.

This page contains some rules of thumb that will help you along
your way, based on data collected up to the release of
Enzo v1.5 (so up to Fall 2008), when
supercomputers typically have 1GB-2GB of memory per processing unit
(a dual-processor node with two cores per processor would have 4-8
GB of memory, for example).


Cosmology or non-cosmology unigrid (non-AMR) simulations

These are actually quite straightforward to predict, given that in
a unigrid simulation the grid is partitioned up in an approximately
equal fashion and then left alone. Experimentation shows that, for
machines with 1-2 GB of memory per core, one gets near-ideal
scaling with 1283 cells per core (so a 5123cell calculations should be run on 64 processors, and a
10243 cell run should be done on 512 processors). This
is comfortably within memory limits for non-cosmology runs, and
there is no danger of running up against a node’s memory ceiling
(which causes tremendous slowdown, if not outright program
failure). Unigrid cosmology runs have a further complication due to
the dark matter particles - these move around in space, and thus
move from processor to processor. Areas where halos and other
cosmological structures form will correspond to regions with
greater than average memory consumption. Keeping 1283cells
and particles per core seems to scale extremely efficiently
up to thousands of processors, though if one is using a machine
like an
IBM Blue Gene [http://domino.research.ibm.com/comm/research_projects.nsf/pages/bluegene.index.html],
which typically has far less memory per core than other computers,
one might have to go to 643 cells/particles per core so
that nodes corresponding to dense regions of the universe don’t run
out of memory.




Cosmology adaptive mesh simulations

Scaling and problem size is much more difficult to predict for an
AMR cosmology run than for its unigrid equivalent. As discussed
above, the amount of memory consumed can grow strongly over time.
For example, a 5123 root grid simulation with seven
levels of adaptive mesh refinement started out with 512 root grid
tiles, and ended up with over 400,000 grids! This calculation was
run on 512 processors, though memory consumption grew to the point
that it had to be run on a system where half of the cores per node
were kept this particle mass field over these processors. For each
grid, only processors with particles contribute to this sum to
reduce the amount of computation and communication. In short, this
routine performs a non-blocking MPI_SUM over a select number of
processors.

CommunicationCollectParticles(SUBGRIDS_LOCAL) – This routine
replaces grid::MoveSubgridParticlesFast(). It keeps the particles on
the same processor, but this doesn’t matter here because the
children grids are always created on the same processor as its
parent and then moved to another processor during load balancing.
CommunicationCollectParticles(SIBLINGS_ONLY) – After load
balancing is complete on level Lsub, we can safely move the
particles to their host processor without the worry of running out
of memory.
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SetAccelerationBoundary (SAB)

One of the minor bugs in Enzo that was uncovered by the addition of
MHD-CT is the boundary on the gravitational acceleration field.

Enzo currently solves gravity in two phases: first by Fast Fourier
Transform on the root grid, then by multigrid relaxation on the
subgrids. Unfortunately, each subgrid is solved as an individual
problem, and is not very concious of its neighbours.

The problem with this is the ghost zones. Enzo MHD-CT is not a
divergence free method, but a divergence preserving method.
There isn’t a mechanism that reduces the divergence of the magnetic
field. Unfortunately, inconsistencies in any fluid quantity can
lead to divergence in the magnetic field. The magnetic field is
stored on the faces of each computational zone, and are updated by
an electric field that is stored on the edges. Since this data sits
in the face of the zone, whenever two grids abut, they share a
face, so it is vital that both grids describe everything in the
stencil of the face centered fields identically, otherwise they
will get different results for the magnetic field on that face, and
divergence will be generated. It was noticed that in the case of
the AccelerationField that due to the isolated nature of the
gravity solver, the ghost zones of a subgrid didn’t necessarily
equal the active zones of grids that were next to it. Thus the
Magnetic fields in the shared face would ultimately be computed
slightly differently, and divergence would show up.

The proper fix for this is replacing the gravity solver with one
that is aware of the entire subgrid hierarchy at once, but this is
quite costly in both programmer time and in compute time. Work has
begun on this project at the LCA, but has not yet been finished.

As an intermediate step, Enzo was hacked a little bit. Initially,
the main loop in EvolveLevel.C looked like this:

for( grid=0, grid< NumberOfGrids, grid++){
   Grid[grid]->SolvePotential
   Grid[grid]->SolveHydroEquations
}





Among, of course, many other physics and support routines. This was
broken into two loops, and a call to SetBoundaryConditions() as
inserted between the two.

for( grid=0, grid< NumberOfGrids, grid++){
   Grid[grid]->SolvePotential
}
SetBoundaryConditions
for( grid=0, grid< NumberOfGrids, grid++){
   Grid[grid]->SolveHydroEquations
}





However, since SetBoundaryConditions() doesn’t natively know about
the AccelerationField, another kludge was done. A new set of
pointers ActualBaryonField was added to Grid.h, and the true
pointers are saved here, while the BaryonField array is temporarily
pointed to AccelerationField. This saved a substantial rewrite of
the boundary setting routines, at the expense of some
less-than-ideal code.

This is not a bug that makes much difference overall in cosmology
simulations, and it does not solve the problem of artificial
fragmentation that has been noticed by some groups. Cosmology tests
have been done that compare solutions both with and without this
fix, and only negligible changes appear. So for most runs, it
simply adds the expense of an extra boundary condition set.
However, with MHD-CT runs it is absolutely necessary, for explosive
divergence will show up.  Additionally, and other simulations that
are extremely sensitive to overall conservation or consistency will require
this flag.  In any condition where the user is potentially concerned about
we suggest running a test both with and without SAB, and comparing the answers.
SAB brings the compuational expense of an additional boundary condition call, and
the memory expense of three global fields, since without it the AccelerationField exists
only on a single grid at a time, while with it all three fields must be created on the entire hierarchy
at once.  This is not a major expense on either count for most simulations.

This is controled by the preprocessor directive SAB. If this is
defined, the necessary steps are taken to call the acceleration
boundary.  In the file machine make file, Make.mach.machine-name, this should be
added to the variable MACH_DEFINES
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Star Particle Class


Purpose

To give star particles more functionality and interaction with the
grids, it was useful to create a new class for a generic particle
type
that can represent, e.g., stars, black holes, sink particles.




Main features


	merging

	accretion

	conversion to a radiation source

	adding feedback spheres to the grid, e.g. mass removal from
accretion, supernovae.

	different behaviors for different star types

	multiple types of star particles

	“active” and “inactive” stars






Approach


[image: Star particle class flowchart]
A flowchart of the logic of the star particle class.
View PDF.



We keep the original implementation of the particles that are stored
in the pointers, ParticlePosition, ParticleVelocity,
ParticleMass, ParticleNumber, ParticleType, and
ParticleAttribute. Star particles are still created in the FORTRAN
routines, e.g. star_maker2.F. In the current version, the star
class is a layer on top of these particles.  Thus we must keep the
particle pointers and objects synchronized when their quantities
change.

Particles created in the FORTRAN routines that will be converted into
a star object initially have a negative particle type. This indicates
that the star is not “born” yet, which is also used to flag various
feedback spheres, such as mass removal from the grid. The stars are
activated, i.e. positive particle type, in Star::ActivateNewStar()
after it has been checked for mergers, accretion, and feedback.

We store the star objects as a linked list in grid class. Because a
star object can affect multiple grids (over multiple processors) when
adding feedback sphere, processors other than the one hosting the star
particle needs to know about this star object. Currently for
convenience, we create a global list of star objects on all
processors. For not many stars (< 100k), this does not consume that
much memory. However in the future, we might have to reconsider how
star particles are communicated across processors.


Feedback spheres

Any event can be set in Star::SetFeedbackFlag to add a feedback
sphere. This sphere can be of any size, and its properties are set in
Star::CalculateFeedbackParameters() and
grid::AddFeedbackSphere().  Because they can cover grids on
multiple levels, we have to ensure that they are all at the same
time. In Star::FindFeedbackSphere(), we check if sphere is
completely contained within grids on the current level. If true, we
can safely add the sphere. If it’s not imperative that the grids are
completely synchronized, one can add the feedback sphere immediate
after the star object is flagged for feedback.




Accretion / Mass Loss

Star objects can store up to 100 (#define MAX_ACCR) accretion
rates as a function of time. Alternatively, currently in the black
hole particles, they can have an instantaneous accretion rate. This is
done in Star::CalculateMassAccretion.  The actual accretion to the
star object is done in Star::Accrete().






How to add a new particle type


	Set the particle type to the negative of the particle type in the
star maker routine. Be sure not to overwrite the type like what’s
done in the regular star_maker.F routines.



	Add the particle type to the if-statement in
grid::FindNewStarParticles.



	Then the particles merge if any exist within
StarClusterCombineRadius. This is not restricted to only star
cluster (radiating) particles. Even if there is any merging, the
particle shouldn’t disappear.



	At the end of StarParticleInitialize(), the routine checks if
any stars should be activated in Star_SetFeedbackFlag.  This
is where you should check first for errors or omissions. You’ll
have to add a new case to the switch statement. Something as simple
as

case NEW_PARTICLE_TYPE:
if (this->type < 0)
   this->FeedbackFlag = FORMATION;
else
   this->FeedbackFlag = NO_FEEDBACK;





will work.

After this, the particle is still negative but will be flipped
after the feedback to the grid is applied in
Star_ActivateNewStar() that’s called from
StarParticleFinalize. Here for Pop II and III stars, we use a
mass criterion. For Pop III stars, we set the mass to zero in the
pop3_maker() f77 routine, then only set the mass after we’ve
applied the feedback sphere.



	The grid feedback is added in StarParticleAddFeedback that is
called in StarParticleFinalize(). In
Star_CalculateFeedbackParameters(), you’ll want to add an
extra case to the switch statement that specifies the radius of the
feedback sphere and its color (metal) density.



	If the feedback sphere is covered by grids on the level calling
StarParticleAddFeedback() (i.e.  all of the cells will be at
the same time), then Grid_AddFeedbackSphere() will be
called. Here you’ll have to add another if-block to add your color
field to the grid.
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Building the Documentation

The documentation for Enzo (including this very document) is built using
the reStructuredText (ReST) [http://docutils.sourceforge.net/rst.html]
syntax which is parsed into final formats using the
Sphinx engine [http://sphinx.pocoo.org/].
Sphinx is a python package which may be installed using the
pip [http://www.pip-installer.org/en/latest/] Python package installation
tool like this:

$ pip install sphinx





Once that is installed, make sure that the binary sphinx-build is in your
path ($ which sphinx-build). Relative to the top level of the Enzo package,
the Enzo docs are in doc/manual.
This directory contains a Makefile and a source directory.
From within this directory, this command will parse the documents into
a hierarchy of HTML files (identical what is on the web) into a
new directory build:

$ make clean
$ make html





If that is successful, point your web browser to the file on disk
(using the Open File... option of the File menu) build/html/index.html
(this is relative to this same directory with the Makefile).
On Mac OS X this command should work: open build/html/index.html.
The docs should be nearly
identical to what is online, but they are coming from the local machine.


Building a PDF of the Documentation

If (PDF)LaTeX is functional, is it possible to build a PDF of the Enzo
documentation in one step.
In the directory with the Makefile, use this command:

$ make latexpdf





If this is successful, the PDF will be build/latex/Enzo.pdf.
The PDF might be preferred for some users, and can be searched all at once for
a term, unlike a local copy of the HTML.

If PDFLaTeX
is not working, $ make latex will not attempt to make the PDF. A PS or DVI
(or whatever anachronistic thing your SPARCstation makes)
can be made starting from build/latex/Enzo.tex.




Updating the Online Pre-Built Documentation

If you are an Enzo developer and need to update the current build of the
documentation, simply modify the docs in the enzo-dev repository in the
same way you would edit the source code.  The docs exist in the
enzo-dev/doc directory.  Submit a pull request for these changes in the
same way you would do so with source modifications.  If accepted,
these new docs will be available almost immediately at:
http://enzo.readthedocs.org.
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Performance Measurement


EnzoTiming.h and performance_tools

This framework consists of two pieces – one that is part of enzo, primarily
contained in src/enzo/EnzoTiming.h, and another which is used to plot and
analyze the performance data, in src/performance_tools/performance_tools.py.


Usage Overview

We have added support for simple, lightweight measurements for the timing and
performance of Enzo.  This allows one to examine which functions are using the
majority of the simulation runtime, and how this varies across multiple
processors. We have built in a number of default timers, such as EvolveLevel for
each level, RebuildHierarchy, SolveHydroEquations, and Group_WriteAllData.
Below, we will outline how to add additional timers and how to generate plots of
the data.




File Format

At each cycle, information is printed out to a file named performance.out.  It
collects the amount of time taken on each of the processors to complete the
listed functions (e.g. Level N EvolveLevel, RebuildHiearchy, etc.) over that
cycle.  Rather than giving all of the values returned by each processor for a
given function, EnzoTiming only outputs the mean amount of time spent per
processor, the maximum & minimum amount of time across processors, and the standard
deviation of this distribution of times.  This is meant to give the user a sense
of how well load-balanced their simulation is across processors, as well as
pinpoint where the majority of the time is being spent.  To explain the output,
we show an example cycle from performance.out:

Cycle_Number 2
Level_0 6.520748e-05 8.344650e-07 6.389618e-05 6.604195e-05 100 4 3.833916e+05
Level_1 3.254414e-05 2.804866e-05 1.406670e-05 8.106232e-05 10 1 7.681875e+04
Level_2 1.159906e-04 2.678922e-05 9.965897e-05 1.623631e-04 14 1 3.017485e+04
Level_3 2.477765e-04 7.348677e-05 2.028942e-04 3.750324e-04 16 1 1.614358e+04
Level_4 5.816817e-04 1.630557e-04 4.820824e-04 8.640289e-04 24 1 1.031492e+04
Level_5 1.266718e-03 3.594168e-04 1.056910e-03 1.889229e-03 26 1 5.131371e+03
Level_6 2.686501e-03 7.197988e-04 2.262831e-03 3.933191e-03 40 1 3.722315e+03
RebuildHierarchy 5.715549e-03 1.371242e-04 5.478144e-03 5.801201e-03
SolveHydroEquations 1.436710e-03 2.407243e-03 4.386902e-05 5.606174e-03
Total 1.499003e-02 3.440975e-05 1.494408e-02 1.503992e-02 230 10 3.835882e+03






Each of the Level_N and Total lines have:

Level_N, mean time, stddev time, min time, max time, number of cell updates,

number of grids, mean cell updates/s/processor




Each non-level line (RebuildHierarchy, SolveHydroEquations, etc.) have:

Section Name, mean time, stddev time, min time, max time.



Time is measured in seconds of wall time for each of the processors.

In the example above, we see that more time is being spent in RebuildHierarchy
than in SolveHydroEquations, and that the load balance is quite poor for the
SolveHydroEquations where the mean is 1.4 ms, with a standard deviation of
2.4 ms.

At the beginning of each simulation (on Cycle 1), we print out a header to the
performance.out file:

# This file contains timing information
# For instructions on how to decipher this information,
# see [enzo base directory]/src/performance_tools/README.
# Times are collected across MPI processes and presented as:
# Level_N/Total, mean time, std_dev time, min time, max time, cell updates, grids, cell updates/processor/sec
# Routine, mean time, std_dev time, min time, max time





Then, at the start of each simulation (whether the beginning or a restart), we
print out the MPI processor count:

# Starting performance log. MPI processes: 4





This is done in case the number of processors changes over time.




Adding New Timers

While there are a number of default timers, it is easy to add new timers to any
section of code in Enzo.

The built-in timers include: EvolveHierarchy (Total), EvolveLevel (for each
level), SolveHydroEquations, RebuildHierarchy, and Group_WriteAllData.  Adding
new times should be as simple as doing two things:


	Add



#include "EnzoTiming.h"





to the top of the file you want to profile,
making sure it is before macros_and_parameters.


	Add



TIMER_START("YourTimerName");





and

TIMER_STOP("YourTimerName");





around the code you want to time.  And adding an initializer statement to
enzo.C (along with the other timer initializers):

TIMER_REGISTER("YourTimerName");





The string that you pass in gets collected in a map which is then iterated over
at the end of each evolve hierarchy.  At that time it prints into a file named
performance.out.




Generating Plots

performance_tools.py (located in src/performance_tools) is a python module
for plotting the performance information stored in performance.out.  The easiest
way to generate plots from performance.out is to call performance_tools.py from
the command line:

python performance_tools.py performance.out






or



python performance_tools.py -s 11 performance.out





to do the same while applying a smoothing kernel to your data 11 cycles in
width.

By default, performance_tools.py will output 8 plots:


	–p1.png

	Plot the mean time taken per processor on each level and on the
simulation as a whole (Total) versus cycle number.  Overplot in
lighter tones are the minimum and maximum time taken on a processor
for each of these quantities.

	–p2.png

	Same as p1.png except scale everything to be as a fraction of the
total time taken.

	–p3.png

	Plot the mean time taken per processor on each level versus cycle number.
Stack each level on the previous layer cumulatively.

	–p4.png

	Plot the mean time taken per processor performing any Non-Level fields versus
cycle number (e.g. the RebuildHiearchy, SolveHydroEquations, and
Group_WriteAllData tasks).  Stack each level on the previous layer
cumulatively.  Scale everything to be as a fraction of the total time taken.

	–p5.png

	Plot the number of cells updated at each level versus cycle number and
stack them cumulatively.

	–p6.png

	Plot the efficiency (cell updates/processor/sec) for each level and for
the simulation as a whole versus cycle number.

	–p7.png

	Plot the load balancing (Max Time - Min Time) for all subprocesses and
levels of the simulation as a whole versus time.

	–p8.png

	Plot the load balancing (Max Time - Min Time) for all subprocesses and
levels of the simulation as a whole versus time.  Normalize them by the
mean time taken for each process.






Generating Additional Plots

If you want to create additional plots of your data beyond the defaults,
simply add new plot_quantities() and plot_stack() calls to the bottom of
performance_tools.py.

This can be as simple as adding one of these lines:

# Plot the mean time taken per processor on Level 0 EvolveLevel calls versus
# Cycle Number.
p.plot_quantity("Level 0", "Mean Time")

# Same as above, but stacks the quantity from zero to the mean time.
p.plot_stack("Level 0", "Mean Time")

# Plot the mean time take per processor for all defined fields (All levels,
# All Functions)
p.plot_quantity([], "Mean Time", repeated_field="All")

# Plot and stack cumulatively on top of each other the number of cell
# updates for each level versus cycle number.
p.plot_stack([], "Cell Updates", repeated_field="Level")

# Plot the mean time taken per processor for all non-level functions versus
# cycle number (including "Total" time taken by everything).
p.plot_quantity("Total", "Mean Time", repeated_field="Non-Level")





Full documentation for the plot_quantity and plot_stack functions can
be found in the docstrings for the performance_tools.py module.  You can
view it either by looking at the source code, or by loading it in python:

import performance_tools as pt
help(pt.perform)








Additional Performance Tools

An additional performance tool exists in the enzo source which provides
slightly different details about a number of subprocesses in enzo.  By default,
it is turned off, although you can enable it by adding a compiler flag to your
Makefile.  The downside to this
performance tool, called MPI Instrumentation, is that it only provides information
if you’re running MPI, it only gives you that information at the end of a
simulation (when it has successfully completed, not when it runs out of time),
and it produces a file for every processor that was used in the simulation
(which can sometimes crowd your directory).

To enable this feature, you can add a flag to your machine’s Makefile to explicitly
set this preprocessor keyword.  Do this by editing your machine’s
Makefile to include this flag to your MACH_DEFINES:

MACH_DEFINES = -DMPI_INSTRUMENTATION





In case you want to see what sort of information is provided by MPI Instrumentation,
a sample output file is included below:

Elapsed wall time:                   3.582540e+03
Communication time:                  1.617045e+03
Global communication time:           9.343419e+02
Receive communication time:          4.590317e+00
Waiting communication time:          0.000000e+00


Transferring region       ( 1940795 times) 4.588604e+00
Sending particles         (    1592 times) 6.079674e-04
Transferring particles    (    9598 times) 5.879667e+01
Transferring Fluxes       (   32369 times) 9.276295e-02
ShareGrids                (    5777 times) 8.463278e+01
Transpose                 ( 1771716 times) 1.597000e+02
BroadcastValue            (    4915 times) 1.144109e-01
MinValue                  (   46066 times) 7.745399e+02
UpdateStarParticleCount   (    5770 times) 1.625819e+01


RebuildHierarchy          (    1626 times) 1.555615e+01
RebuildHierarchy interval (    1626 times) 7.773995e-02
Load balancing            (       0 times) 0.000000e+00
Region transfer size      ( 1940795 times) 9.709615e+09
Particles sent            (    1592 times) 0.000000e+00
Particle transfer size    (    9598 times) 1.039000e+04


Number of load balancing calls 0/0 (LOAD_BALANCE_RATIO=0.000000)
Number of flagging cells  (    5418 times) 4.116929e+07


Average percentage of flagging cells 2.420569e-01(= 1.311464e+03/5418)
Average percentage of moving cells 0






Samuel Skillman (samskillman at gmail.com)

Cameron Hummels (chummels at gmail.com)
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Presentations Given About Enzo

This is a collection of various presentations given about Enzo, or about
work done with Enzo, or tools (with examples) to analyze Enzo data.
There are some slides [http://lca.ucsd.edu/workshops/enzo2010/slides/] and videos [http://lca.ucsd.edu/workshops/enzo2010/watch_videos.html] available from the 2010 Enzo Workshop held in
San Diego [http://lca.ucsd.edu/workshops/enzo2010/].



	Halos and Halo Finding in yt
	The Slides

	Merger Tree Graphviz Example
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Halos and Halo Finding in yt

Below are the slides of a talk given by Stephen Skory at the
2010 Enzo Users Conference held June 28-30 at the San Diego
Supercomputer Center. This talk introduces the three different
methods of finding halos available in yt, and some of the
other tools in yt that can analyze and visualize halos.


The Slides

[image: ../_images/skory-001-001.jpg]
[image: ../_images/skory-002-001.jpg]
[image: ../_images/skory-003-001.jpg]
How do we know dark matter exists and surrounds galaxies? Here are some
of the ways.

[image: ../_images/skory-004-001.jpg]
Observations look for things that glow, like stars, which live in galaxies.
In simulations we want to find where the galaxies are, because that’s where
the interesting things are. It is better to look for dark matter rather than
stars or gas because it is a stronger signal. Also, some simulations don’t
have stars or gas at all, like semi-analytic simulations.

[image: ../_images/skory-005-001.jpg]
[image: ../_images/skory-006-003.jpg]
All particles closer than 0.2 of the mean inter-particle separation (s) are
linked, and any all all links of particles are followed recursively to form the
halo groups.

[image: ../_images/skory-007-002.jpg]
HOP starts by calculating a kernel density for each particle based on the mass of and
distances to its nearest neighbors, the default is 64 of them.

[image: ../_images/skory-008-003.jpg]
Chains are built by linking particles uphill, from a particle with lower density to one that is
higher, from the set of nearest neighbors. Particles that are their own densest nearest
neighbors terminate the chains. Neighborinnearest neighbors, but in different chains.

[image: ../_images/skory-009-001.jpg]
Neighboring chains are merged to build the final halos using various rules. The figure above
shows the final halo enclosed by a dashed line. A few particles have been excluded from the
final halo because they are underdense.

[image: ../_images/skory-010-001.jpg]
It is possible to run FOF & HOP in parallel. We start here with three halos in a volume, one of
which (3) lies on the periodic boundary of the volume.

[image: ../_images/skory-011-001.jpg]
The dashed lines depict the subdivision of the full volume into subvolumes (A,B,C, and D)
which define the sub-units for parallel analysis. Note that halos 2 & 3 lie in more than one
subvolume.

[image: ../_images/skory-012-001.jpg]
The solution is to add extra data on the faces of the subvolumes such that all halos are fully
enclosed on at least one subvolume. Here subvolume C has been ‘padded’ which allows halo
2 to be fully contained in subvolume C. The centers of the halos, shown with stars, determine
final ownership of halos so there is no duplication. However, this method breaks down when
the halo sizes are a significant fraction of the full volume.

[image: ../_images/skory-013-001.jpg]
Parallel HOP is a fully-parallel implementation of HOP that allows both computation and
memory load to be distributed using MPI parallelism.

[image: ../_images/skory-014-003.jpg]
Parallel HOP can reduce the padding by a substantial amount compared to FOF/HOP
parallelism. This leads to many work- & memory-load advantages.

[image: ../_images/skory-015-001.jpg]
The first command builds a reference to an Enzo dataset. The second
runs HOP on the particles in the dataset and stores the result in the
halos object. The write_out command writes the halo particulars to a
text file that contains the ID, mass, center of mass, maximum radius, bulk
velocity and velocity dispersion for each halo.
write_particle_lists and write_particle_lists_txt stores the information
for the exact particles that are identified in each halo.

[image: ../_images/skory-016-001.jpg]
This shows how to find halos very simply and quickly using HOP in yt. First call ‘iyt’ from the
command line. Next we reference the dataset, and then find the halos using HOP and the
default settings. The next command writes out a text file with halo particulars, next the
particle data for halos is written to a HDF5 file, and the last command saves a text file of
where the particle halo data goes (important for parallel analysis).

[image: ../_images/skory-017-001.jpg]
test1_Projection_x_Density.png. A density projection through a test dataset.

[image: ../_images/skory-018-001.jpg]
test2_Projection_x_Density.png. The halos have beecorresponds to the maximum
radius of the halo.

[image: ../_images/skory-019-001.jpg]
It is easy to access information about halos. All of these are in code units.

[image: ../_images/skory-020-001.jpg]
These commands will make a cutting slice through the center of the halo
with normal vector oriented along the angular momentum vector of the halo.

[image: ../_images/skory-021-001.jpg]
test3_CuttingPlane__Density.pngtest3_CuttingPlane__Density.png.

[image: ../_images/skory-022-001.jpg]
he halo profiler written by Britton Smith can analyze halos for various quantities. Given a
HopAnalysis.out file, it can calculate many things on each halo.

[image: ../_images/skory-023-001.jpg]
mages of the largest halo in the volume produced by the Halo Profiler. Also shown is the
contents of the HDF5 files produced by the Halo Profiler.

[image: ../_images/skory-024-001.jpg]
Merger trees are important when studying a halo because they affect many aspects of the
halo. A merger tree tool analyzes a time-ordered series of datasets to build a comprehensive
listing of the relationships between halos.

[image: ../_images/skory-025-001.jpg]
[image: ../_images/skory-026-001.jpg]
A SQL database can be thought of as a spreadsheet-like container, however entries are not
ordered, unless the SQL query specifies that. This shows a few made-up example values in
the database for a few real columns. Note that SnapHaloID is not unique. There are more
columns in the database, but this is just an example. Columns not shown list the children for
these halos.

[image: ../_images/skory-027-001.jpg]
An example of how to find the GlobalHaloID for the most massive halo for the lowest redshift
dataset.

[image: ../_images/skory-028-001.jpg]
Using the output of the previous slide, an example of how to find the parents that
contribute the greatest fraction of their mass to
the most massive halo at the lowest redshift.

[image: ../_images/skory-029-001.jpg]
An example of how to find the most massive parent of the most massive halo at the lowest
redshift.

[image: ../_images/skory-030-001.jpg]
An example of how to output the full merger tree for a given halo (20492) to a graphviz file
(MergerTree.gv).

[image: ../_images/skory-031-001.jpg]



Merger Tree Graphviz Example

Below is an example section of the Graphviz view of the MergerTree.gv file
produced above.

[image: ../_images/skory-tree.png]
Time moves from the top to the bottom.
The numbers in the black boxes give the redshift for each horizontal level
of the merger tree.
Each colored box corresponds to a halo that is in the merger tree for our final halo.
The top number in each box gives the mass of the halo as determined by the halo
finder.
The second number is the center of mass for the halo in code units.
The color of the box is scaled such that at each redshift, the most massive halo
is red, and the smallest blue.
The arrows connect a ‘parent’ halo to a ‘child’ halo, and the number next to
each arrow gives the percentage of the mass of the parent halo that goes to
the child halo.
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* yt has many powerful tools for analyzing halos.
* Only the simplest examples shown here!

* New tools are constantly being added by our
active developer community.
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Make a Cutting Slice

>>> sp = pf.h.sphere(cm, rd)

>>> L = sp.quantities[" AngularMomentumVector"]()
>>> pc2 = PlotCollection(pf, center=cm)

>>> pc2.add_cutting_plane("Density", L)

>>> pc2.set_width(2*rd, 'unitary')

>>> pc2.save("test3")
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Halo Finding: Why?

* Baryons follow dark matter, but dark matter is a
larger signal, so to find galaxies look for dark
matter halos.

* WMAP7: Q) =0.734 , =0.045 Qpp = 0.222

* Dark matter only, semi-analytic simulations.
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29 June 2010
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How to Run
A Halo Finder

Yoiyt

>>> pf = load("RedshiftOutput0000")
>>> halos = HaloFinder(pf)

>>> halos.write_out("HopAnalysis.out")
>>> halos.write_particle_lists("HOP")

>>> halos.write_particle_lists_txt("HOP")
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Parallel Halo
Merger Tree

* Galaxy morphology, star formation events, color,
luminosity, mass.

* All particles have unique identifier which allows
tracking of memberships in halos over time.

* Stores merger tree in SQLite database, similar to
other public data archives (SDSS, Millennium).

* Runs halo finder (if needed) in parallel, as well as
halo membership comparisons.
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Halo Finding:
Parallel HOP

* Key concepts:

* If a particle has the correct set of neighbors, its
density will be correct. Padding is a function of
inter-particle spacing, not the size of the halo
objects.

* Chains & neighboring chain relationships are
established between tasks using MPI
communication.
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Halo Profiler

* Calculate virial mass & radius.

* Radial profiles of halo quantities. Temperature,
density, derived fields.

* Projections of individual halos.

* Parallelized.
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Parallel Halo
Merger Tree

>>> results = mt.query(“SELECT
min(GlobalHalolD) FROM Halos WHERE
ChildHalolD0=20492 and ChildHaloFrac0>0.5;”

>>> results

[(19945,)]
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Access Halo Data

>>> cm = halos[0].center_of _mass()
>>>cm
array([ 0.94814483, 0.43314912, 0.72416024])
>>> rd = halos[0].maximum_radius()
>>>rd

0.031991969089097162
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Visualize the Halos

>>> pc = PlotCollection(pf, center=[0.5, 0.5, 0.5])
>>> pc.add_projection(" Density", 0)

>>> pc.save("test1")

>>> pc.plots[-1].modify["hop_circles"](halos)

>>> pc.save("test2")
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Parallel Halo
Merger Tree

* Output is a SQLite database. With this a user can:

* Output a Graphviz dot file for visualizing the
merger tree for a set of halos.

* Query the database directly.

* Output the database to a text file.
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Halo Finding:
HOP

STEP 4: FINAL HALOS
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Parallel Halo
Merger Tree

>>> MergerTreeDotOutput(halos=20492,
database="halos.db’, link_min=0.1,
dotfile='"MergerTree.gv')
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Halo Finding: How?

* Dark matter is represented by collisionless
massive particles.
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Skills You’re
About To Learn

* Find dark matter halos in an Enzo simulation, in
serial and parallel.

* Use imaging tools to visualize the halos.

* Use the Halo Profiler to analyze the baryonic
content of halos.

* Build a merger tree from a time-ordered set of
snapshots.
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Parallel Halo
Merger Tree

GlobalHaloID |SnapHalolD | SnapZ HaloMass | ChildHalolDO | ChildHaloFracO | ...

24924 3 0.47 |1.53E+13| 25021 0.94

5825 94 2.72 |6.41E+10| 5899 0.10

28 28 8.49 (5.92E+11 54 0.86

19482 150 | 0.89 |7.81E+10| 19545 0.99

25824 3 0.43 [1.61E+13| 26123 0.98
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Parallel Halo
Merger Tree

>>> from yt.extensions.merger_tree import *
>>> mt = MergerTreeConnect(database="halos.db’)

>>> results = mt.query(“SELECT
max(GlobalHalolD) FROM Halos WHERE
SnapHalolD=0;")

>>> results

[(20492,)]
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Parallel Halo
Merger Tree

>>> results = mt.query(“SELECT GlobalHalolD
FROM Halos WHERE ChildHalolD0=20492 and
ChildHaloFrac0>0.5;”

>>> results

[(20024,), (19945,)]
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Dark Matter Halos

* Observers see things
that glow: stars,
baryonic gas.

* Galaxies & clusters live
in dark matter halos.
We know due to:

* Rotation curves

* Gravitational lensing

* Simulations
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