Enzo 2.4 documentation

How to run a cosmology simulation

In order to run a cosmology simulation, you’ll need to build enzo.exe, inits.exe and ring.exe (see Obtaining and Building Enzo) inits creates the initial conditions for your simulation, and ring splits up the root grid which is necessary if you’re using parallel IO. Once you have built the three executables, put them in a common directory where you will run your test simulation. You will also save the inits and param files (shown and discussed below) in this directory.

Creating initial conditions

The first step in preparing the simulation is to create the initial conditions. The file inits uses is a text file which contains a list of parameters with their associated values. These values tell the initial conditions generator necessary information like the simulation box size, the cosmological parameters and the size of the root grid. The code then takes that information and creates a set of initial conditions. Here is an example inits file:

#  Generates initial grid and particle fields for a
#    CDM simulation
#  Cosmology Parameters
CosmologyOmegaBaryonNow      = 0.044
CosmologyOmegaMatterNow      = 0.27
CosmologyOmegaLambdaNow      = 0.73
CosmologyComovingBoxSize     = 10.0    // in Mpc/h
CosmologyHubbleConstantNow   = 0.71      // in units of 100 km/s/Mpc
CosmologyInitialRedshift     = 60
#  Power spectrum Parameters

PowerSpectrumType            = 11
PowerSpectrumSigma8          = 0.9
PowerSpectrumPrimordialIndex = 1.0
PowerSpectrumRandomSeed      = -584783758
#  Grid info
Rank                = 3
GridDims            = 32 32 32
InitializeGrids     = 1
GridRefinement      = 1
#  Particle info
ParticleDims        = 32 32 32
InitializeParticles = 1
ParticleRefinement  = 1
#  Overall field parameters
#  Names
ParticlePositionName = ParticlePositions
ParticleVelocityName = ParticleVelocities
GridDensityName      = GridDensity
GridVelocityName     = GridVelocities

inits is run by typing this command:

./inits.exe -d Example_Cosmology_Sim.inits

inits will produce some output to the screen to tell you what it is doing, and will write five files: GridDensity, GridVelocities, ParticlePositions, ParticleVelocities and PowerSpectrum.out. The first four files contain information on initial conditions for the baryon and dark matter componenets of the simulation, and are HDF5 files. The last file is an ascii file which contains information on the power spectrum used to generate the initial conditions.

It is also possible to run cosmology simulations using initial nested subgrids.

Parallel IO - the ring tool

This simulation is quite small. The root grid is only 32 cells on a side and we allow a maximum of three levels of mesh refinement. Still, we will use the ring tool, since it is important for larger simulations of sizes typically used for doing science. Additionally, if you wish to run with 64 or more processors, you should use ParallelRootGridIO, described in Parallel Root Grid IO.

The ring tool is part of the Enzo parallel IO (input-output) scheme. Examine the last section of the parameter file (see below) for this example simulation and you will see:

# IO parameters
ParallelRootGridIO = 1
ParallelParticleIO = 1

These two parameters turn on parallel IO for both grids and particles. In a serial IO simulation where multiple processors are being used, the master processor reads in all of the grid and particle initial condition information and parcels out portions of the data to the other processors. Similarly, all simulation output goes through the master processor as well. This is fine for relatively small simulations using only a few processors, but slows down the code considerably when a huge simulation is being run on hundreds of processors. Turning on the parallel IO options allows each processor to perform its own IO, which greatly decreases the amount of time the code spends performing IO.

The process for parallelizing grid and particle information is quite different. Since it is known exactly where every grid cell in a structured Eulerian grid is in space, and these cells are stored in a regular and predictable order in the initial conditions files, turning on ParallelRootGridIO simply tells each processor to figure out which portions of the arrays in the GridDensity and GridVelocities belong to it, and then read in only that part of the file. The particle files (ParticlePositions and ParticleVelocities) store the particle information in no particular order. In order to efficiently parallelize the particle IO the ring tool is used. ring is run on the same number of processors as the simulation that you intend to run, and is typically run just before Enzo is called for this reason. In ring, each processor reads in an equal fraction of the particle position and velocity information into a list, flags the particles that belong in its simulation spatial domain, and then passes its portion of the total list on to another processor. After each portion of the list has made its way to every processor, each processor then collects all of the particle and velocity information that belongs to it and writes them out into files called PPos.nnnn and PVel.nnnn, where nnnn is the processor number. Turning on the ParallelParticleIO flag in the Enzo parameter file instructs Enzo to look for these files.

For the purpose of this example, you’re going to run ring and Enzo on 4 processors (this is a fixed requirement). The number of processors used in an MPI job is set differently on each machine, so you’ll have to figure out how that works for you. On some machines, you can request an ‘interactive queue’ to run small MPI jobs. On others, you may have to submit a job to the batch queue, and wait for it to run.

To start an interactive run, it might look something like this:

qsub -I -V -l walltime=00:30:00,size=4

This tells the queuing system that you want four processors total for a half hour of wall clock time. You may have to wait a bit until nodes become available, and then you will probably start out back in your home directory. You then run ring on the particle files by typing something like this:

mpirun -n 4 ./ring.exe pv ParticlePositions ParticleVelocities

This will then produce some output to your screen, and will generate 8 files: PPos.0000 through PPos.0003 and PVel.0000 through PVel.0003. Note that the ‘mpirun’ command may actually be ‘aprun’ or something similar. Consult your supercomputer’s documentation to figure out what this command should really be.

Congratulations, you’re now ready to run your cosmology simulation!

Running an Enzo cosmology simulation

After all of this preparation, running the simulation itself should be straightforward. First, you need to have an Enzo parameter file. Here is an example compatible with the inits file above:

# AMR PROBLEM DEFINITION FILE: Cosmology Simulation (AMR version)
#  define problem
ProblemType                = 30      // cosmology simulation
TopGridRank                = 3
TopGridDimensions          = 32 32 32
SelfGravity                = 1       // gravity on
TopGridGravityBoundary     = 0       // Periodic BC for gravity
LeftFaceBoundaryCondition  = 3 3 3   // same for fluid
RightFaceBoundaryCondition = 3 3 3
#  problem parameters
CosmologySimulationOmegaBaryonNow       = 0.044
CosmologySimulationOmegaCDMNow      = 0.226
CosmologyOmegaMatterNow         = 0.27
CosmologyOmegaLambdaNow         = 0.73
CosmologySimulationDensityName          = GridDensity
CosmologySimulationVelocity1Name        = GridVelocities
CosmologySimulationVelocity2Name        = GridVelocities
CosmologySimulationVelocity3Name        = GridVelocities
CosmologySimulationParticlePositionName = ParticlePositions
CosmologySimulationParticleVelocityName = ParticleVelocities
CosmologySimulationNumberOfInitialGrids = 1
#  define cosmology parameters
ComovingCoordinates        = 1       // Expansion ON
CosmologyHubbleConstantNow = 0.71    // in km/s/Mpc
CosmologyComovingBoxSize   = 10.0  // in Mpc/h
CosmologyMaxExpansionRate  = 0.015   // maximum allowed delta(a)/a
CosmologyInitialRedshift   = 60.0      //
CosmologyFinalRedshift     = 3.0     //
GravitationalConstant      = 1       // this must be true for cosmology
#  set I/O and stop/start parameters
CosmologyOutputRedshift[0] = 25.0
CosmologyOutputRedshift[1] = 10.0
CosmologyOutputRedshift[2] = 5.0
CosmologyOutputRedshift[3] = 3.0
#  set hydro parameters
Gamma                  = 1.6667
PPMDiffusionParameter  = 0       // diffusion off
DualEnergyFormalism    = 1       // use total & internal energy
InterpolationMethod    = 1     // SecondOrderA
CourantSafetyNumber    = 0.5
ParticleCourantSafetyNumber = 0.8
FluxCorrection         = 1
ConservativeInterpolation = 0
HydroMethod            = 0
#  set cooling parameters
RadiativeCooling       = 0
MultiSpecies           = 0
RadiationFieldType     = 0
StarParticleCreation   = 0
StarParticleFeedback   = 0
#  set grid refinement parameters
StaticHierarchy           = 0    // AMR turned on!
MaximumRefinementLevel    = 3
MaximumGravityRefinementLevel = 3
RefineBy                  = 2
CellFlaggingMethod        = 2 4
MinimumEfficiency         = 0.35
MinimumOverDensityForRefinement = 4.0 4.0
MinimumMassForRefinementLevelExponent = -0.1
MinimumEnergyRatioForRefinement = 0.4

#  set some global parameters
GreensFunctionMaxNumber   = 100   // # of greens function at any one time

# IO parameters

ParallelRootGridIO = 1
ParallelParticleIO = 1

Once you’ve saved this, you start Enzo by typing:

mpirun -n 4 ./enzo.exe -d Example_Cosmology_Sim.param >& output.log

The simulation will now run. The -d flag ensures a great deal of output, so you may redirect it into a log file called output.log for later examination. This particular simulation shouldn’t take too long, so you can run this in the same 30 minute interactive job you started when you ran inits. When the simulation is done, Enzo will display the message “Successful run, exiting.”

Congratulations! If you’ve made it this far, you have now successfully run a cosmology simulation using Enzo!